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Abstract

The paper proposes an elementary agent-based asset pricing model that, invoking the
two trader types of fundamentalists and chartists, comprises four features: (i) price de-
termination by excess demand; (ii) a herding mechanism that gives rise to a macroscopic
adjustment equation for the market fractions of the two groups; (iii) a rush towards fun-
damentalism when the price misalignment becomes too large; and (iv) a stronger noise
component in the demand per chartist trader than in the demand per fundamentalist
trader, which implies a structural stochastic volatility in the returns. Combining ana-
lytical and numerical methods, the interaction between these elements is studied in the
phase plane of the price and a majority index. In addition, the model is estimated by
the method of simulated moments, where the choice of the moments reflects the basic
stylized facts of the daily returns of a stock market index. A (parametric) bootstrap
procedure serves to set up an econometric test to evaluate the model’s goodness-of-fit,
which proves to be highly satisfactory. The bootstrap also makes sure that the estimated
structural parameters are well identified.

JEL classification: D84; G12; G14; G15.

Keywords: Structural stochastic volatility; method of simulated moments; autocorrela-
tion pattern; fat tails; bootstrapped p-values.

1. Introduction

Models with heterogeneous interacting agents that rely on simple heuristic trading strate-
gies have proven to be quite successful in generating rich dynamics that may also more

∗ Corresponding author.
Email address: franke@uni-bremen.de (Reiner Franke ).

1 With respect to a (more limited) precursor of this paper, we wish to express our thanks to a
referee of another journal for his or her helpful and very careful remarks.



or less resemble the evolution of asset prices on financial markets. 2 Guided by question-
naire evidence (Menkhoff and Taylor, 2007), this literature focusses on the behaviour
of fundamental and technical traders. 3 The latter, also called chartists, employ trading
methods that attempt to extract buying and selling signals from past price movements
(Murphy, 1999). By contrast, fundamentalists bet on a reduction in the current mispric-
ing with respect to some fundamental value of the asset (see already Graham and Dodd,
1951).

Small models with extremely simple versions of these two strategies have proven to be
quite successful in generating dynamic phenomena that share central characteristics with
the time series from real financial markets, such as fat tails in the return distributions,
volatility clustering and long memory effects. Two features are particularly useful in this
respect. First, a device that permits the agents to switch between fundamentalist and
technical trading, so that the market fractions of the two groups endogenously vary over
time. Second, the concept of structural stochastic volatility (SSV henceforth). By this,
we mean a random term that is added to the deterministic “core demand” of each of the
two strategies, which is supposed to capture some of the real-life heterogeneity within
the groups. Given that the two noise terms may differ in their variance, the variations of
the market fractions will induce variations in the overall noise level of the asset demand,
which then carry over to the price dynamics.

Several models with these features have been put forward and (partly) also successfully
estimated by Franke (2010) and Franke and Westerhoff (2010, 2011a,b). The present
paper reconsiders a model of this origin that emphasizes a herding mechanism. Here
we wish to provide an in-depth investigation into its dynamic properties, which takes
place in the phase plane of a majority index and the asset price. Integrating analytical
and numerical methods, this framework allows us to study the conditions of a stochastic
switching between a tranquil fundamentalist regime of relatively long duration and a
more volatile chartist regime of shorter duration. In this way, we are able to go beyond
the mere observation of a simulation outcome and obtain a better understanding of why
the model performs so effectively.

We also take up the issue of estimating this model once again, albeit with two new
aspects. First, the computation of the weighting matrix for the objective function is
based on an alternative bootstrap procedure, which we have not seen applied before
and which we believe is superior to the block bootstrap used in previous work. Apart
from this improvement, we wish to make sure that the resulting parameter estimates are
nevertheless robust. Second, complementary to the measures of a model’s goodness-of-fit

2 For recent surveys of this burgeoning field of research, see Chiarella et al. (2009), Hommes
(2006), Hommes and Wagener (2009), LeBaron (2006), Lux (2009a) and Westerhoff (2009), among
others.
3 Other evidence is based on numerous laboratory experiments; see, e.g., Heemeijer et al. (2009)
or Hommes et al. (2007).
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discussed in other contributions, we propose the concept of a more straightforward p-
value. This statistic is derived from a large number of re-estimations of the model which,
in particular, give us a distribution of the minimized values of the objective function
under the null hypothesis that the model is true. Then, the p-value of the model is given
by one minus the quantile that is associated with the originally estimated loss. The
model fails to be outright rejected if it exceeds the five per cent level; and the higher this
p-value, the better the fit.

The estimation approach itself, which proves most suitable for our purpose of reproduc-
ing the aforesaid stylized facts, is the method of simulated moments (MSM). “Moments”
refers to the time series of one or several variables and means certain summary statistics
computed from them, the empirical values of which the model-generated moments should
try to match. In our case, the latter have no analytical expressions but must be simu-
lated. Hence the estimation searches for the parameter values of a model that minimize
the distance between the empirical and simulated moments, where the distance is defined
by a quadratic loss function (specified by the weighting matrix mentioned above). In the
present context, the moments will reflect what is considered to be the most important
stylized facts of the daily stock returns from the S&P 500 stock market index, in par-
ticular, volatility clustering and fat tails. After all, this is what the evaluation of the
models in the literature usually centres around. It thus also goes without saying that the
MSM estimation approach may equally be applied to other financial market models of a
similar complexity. 4

The remainder of the paper is organized as follows. The model is introduced in the
next section. In Section 3 the dynamic properties of the model are studied in the phase
plane. Section 4 briefly recapitulates the MSM approach, carries out the estimation on the
empirical moments and then applies the econometric testing, the computations of which
simultaneously provide us with the confidence intervals of the estimated parameters. Sec-
tion 5 concludes. Appendix A1 contains a few remarks on the technical treatment of our
herding mechanism in the earlier literature; the mathematical proofs of two propositions
in the main text are relegated to Appendix A2; and Appendices A3 and A4 collect some
estimation details.

2. Formulation of the model

2.1. Excess demand and price adjustments

We consider a financial market for a risky asset on which the price changes are deter-
mined by excess demand. The market is populated by two types of speculative traders,

4 The choice of MSM does not rule out that other estimation methods may be tried as well.
For a brief summary of the comparative advantages of MSM, see Franke (2009, pp. 804f). In our
opinion, its main merits are the high transparency in the evaluation of a model’s goodness-of-fit,
and the relatively low computational costs.
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fundamentalists and chartists. Fundamentalists have long time horizons and base their
demand on the differences between the current price and the fundamental value. Even
though they might expect the gap between the two prices to widen in the immediate
future, they do not trade on the likeliness of this event and rather choose to place their
bets on an eventual rapprochement. Chartists, on the other hand, have a short-term per-
spective and bet on the most recent price movements, buying (selling) if prices have been
rising (falling). However, the agents are allowed to switch from one type to the other,
where their choice is governed by a herding mechanism combined with an evaluation of
the most recent price levels.

Let us start with the demand for the asset. 5 We join numerous examples in the
literature and, in the first step, postulate two extremely simple deterministic rules. These
rules govern what we may call the core demand in each group. For the fundamentalists,
this demand is inversely related to the deviations of the (log) price pt from its fundamental
value p�, where we treat the latter as an exogenously given constant (for simplicity and
to show that no random walk behaviour of the fundamental value is required to obtain
the stylized facts). On the other hand, the core demand of the group of chartists is
hypothesized to be proportional to the returns they have just observed, i.e. (pt − pt−1).

A crucial feature of our models is that we add a noise term to each of these demand
components (and not just their sum). The two terms are meant to reflect a certain within-
group heterogeneity, which we do not wish to describe in full detail. Since the many
individual digressions from the simple rules as well as their composition in each group
will more or less accidentally fluctuate from period to period, it is a natural short-cut to
have this heterogeneity represented by two independent and normally distributed random
variables εf

t and εc
t for the fundamentalists and chartists, respectively. 6 Combining the

deterministic and stochastic elements, the net demands of an average fundamentalist and
chartist trader for the asset in period t are supposed to be given by

df
t = φ (p� − pt) + εf

t εf
t ∼ N(0, σ2

f ) φ > 0 (1)

dc
t = χ (pt − pt−1) + εc

t εc
t ∼ N(0, σ2

c ) χ ≥ 0 (2)

where here and in the following Greek symbols denote constant and nonnegative para-
meters. Total demand (normalized by the population size) results from multiplying df

t

5 To be exact, by demand we mean the orders (positive or negative) per trading period, not the
desired positions of the agents.
6 For example, individual and presently active traders with a fundamentalist strategy may adopt
different values for their fundamental price, they react with different intensities to their trading
signal, or they experiment with more complex trading rules which may also be continuously
subjected to further modifications. Similarly so for the chartists, which explains the independence
of εf

t and εc
t . In short, the two noise variables can be conceived of as a most convenient short-cut

of certain aspects that are more specifically (but to some extent also more arbitrarily) dealt with
in models with hundreds or thousands of different agents that one would have to keep track of
over time (see Farmer and Joshi, 2002; LeBaron, 2006).
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and dc
t by the market fractions of the two groups.

It is an intricate matter to judge whether or not the stochastic noise may “dominate”
the deterministic terms in (1) and (2). More specifically, it may be observed that a higher
signal-to-noise ratio within the fundamental rule (1) implies a stronger mean-reversion,
which would eventually lead to (counterfactual) negative autocorrelations in the raw
returns. On the other hand, a higher signal-to-noise ratio within the chartist rule (2) will
bring about more pronounced bubbles and thus positive autocorrelations in the returns
(which would equally be counterfactual). We will leave it to the data to decide about the
levels of these ratios and, in particular, whether the coefficients φ and χ are significantly
different from zero. In this regard, it may be noted that χ = 0 would turn the chartists
into pure noise traders. Even the additional assumption of a zero variance σ2

c = 0 would
make sense; under these circumstances ‘chartism’ is tantamount to not trading at all. In
other words, the agents would choose between fundamentalist strategies and complete
inactivity. 7

Concerning the market fractions of fundamentalism and chartism, it will be convenient
below to fix the population size at 2N . Then, with nf

t and nc
t being the number of

fundamentalists and chartists, define xt := (nf
t − nc

t)/2N as the majority index of the
fundamentalists. By construction, xt is contained between −1 (all traders are chartists)
and +1 (all traders are fundamentalists). Expressing the population shares of the two
groups in terms of this index yields 8

nf
t / 2N = (1 + xt) / 2 , nc

t / 2N = (1 − xt) / 2 (3)

Total (normalized) excess demand, which is thus given by (1+xt) df
t /2 + (1−xt) dc

t/2,
will generally not balance. A market maker is assumed to absorb any excess of supply,
and to serve any excess of demand from his inventory. He reacts to this disequilibrium by
changing the price for the next period, where we make use of the derivation of the market
impact function in Farmer and Joshi (2002, p. 152f), according to which the market maker
adjusts the price with a factor μ > 0 in the direction of excess demand. 9 The coefficient
μ is inversely related to market liquidity, or market depth. Following common practice
in models that do not further discuss the microstructure of the market, it is treated as

7 In actual fact, χ = σc = 0 results from an estimation of the USD–DEM exchange rate; see
Franke and Westerhoff (2011a, Section 7). The situation for φ = 0 and, possibly, σf = 0 would
be formally analogous. In this case, however, the price dynamics would no longer be anchored on
the fundamental value.
8 To see this, define nt = (nf

t −nc
t)/2 = xtN , write the identity nf

t +nc
t = 2N as nf

t /2 = N−nc
t/2

and add nf
t /2 on both sides of this equation. This yields nf

t = N + nt and, after division by 2N ,
the first part of eq. (3). The derivation of the second part is analogous.
9 As usual in this kind of framework, any other feedbacks when his inventory continues to deviate
from some target are ignored, which (in a stochastic model) is clearly an inconsistency. It could
be removed by adding the risk aversion concept of the market maker (and also the other agents)
studied in Franke (2008c). We forego this option to avoid blurring the central mechanisms of the
model.

5



a fixed parameter. In sum, the equation determining the price for the next period t+1
may be written as

pt+1 = pt +
μ

2

[
(1+xt) φ (p� − pt) + (1−xt) χ (pt − pt−1) + εt

]
(4)

εt ∼ N(0, σ2
t ) , σ2

t = [(1+xt)2 σ2
f + (1−xt)2 σ2

c ] / 2 (5)

Equation (5) is derived from the fact that the sum of the two normal distributions in
(1) and (2), which are to be multiplied by the market fractions (1 ± xt)/2, is again
normally distributed, with mean zero and the variance being equal to the sum of the two
single variances. Obviously, if σ2

f and σ2
c are different, σ2

t will change with the changes
in the majority index xt. The time-varying variance σ2

t will, in fact, be a key feature
of the model. While this stochastic volatility component might be akin to a GARCH-
type of modelling, we stress that it is not just a handy technical device but emerges
from a structural (though parsimonious) modelling approach. The random components
introduced in the formulation of the group-specific demand may therefore be said to
give rise to structural stochastic volatility (SSV) in the returns (i.e. the log differences in
prices). 10

Before continuing, a general feature is worth pointing out. First, in a pure chartist
regime, xt ≡ −1, the two-dimensional price process is easily seen to have a zero and
a unit root. Second, in a pure fundamentalist regime, xt ≡ 1, the root of the one-
dimensional price dynamics is 1 − μφ, where in estimations the product μφ turns out
to be around 0.01 or less. Hence there is broad scope for persistent price misalignment,
which is certainly a good general selling point for the model.

2.2. Switching of the market fractions

The model is completed by setting up the motions of the majority index xt. In light
of earlier presentations in the literature (e.g. Weidlich and Haag, 1983, or Lux, 1995),
we wish to emphasize that xt is the index actually prevailing in period t (and not some
expected value; see the discussion in Appendix A1). The index is predetermined in each
period, and only changes from one period to the next. 11

The law governing the adjustments of xt rests on the supposition that in period t all
fundamentalists, whose population share is (1+xt)/2, have the same transition probability

10 Randomized demand functions of heterogeneous traders were also considered in Westerhoff and
Dieci (2006) and Westerhoff (2008). The idea as such may be traced back to Westerhoff (2003).
However, the implied feature of stochastic volatility and its scope for matching certain stylized
facts of (daily) returns was not fully elaborated there. More on the particular effects of SSV can
be learned from the investigation in Franke (2010), where this principle of heterogeneous noise
was incorporated into two other model types.
11 This is different from the discrete choice approach, which is a constituent part of the Brock-
Hommes (1998) model variety. There, the population shares of the agents—and not their rates
of change—are directly a function of the state variables of the model.
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πfc
t to convert to chartism, and all chartists, whose population share is (1−xt)/2, have the

same probability πcf
t to convert to fundamentalism. If the number of agents is sufficiently

large, the intrinsic noise from different realizations when the individual agents apply their
random mechanism can be neglected. So the changes in the groups are given directly by
their size multiplied by the transition probabilities. Accordingly, the population share of
the fundamentalists decreases by πfc

t (1+xt)/2 due to the fundamentalists leaving this
group, and it increases by πcf

t (1−xt)/2 because of the chartists who newly join this group.
As a net effect, the following deterministic adjustment equation for xt is obtained, 12

xt+1 = xt + (1−xt) πcf
t − (1+xt)πfc

t (6)

As indicated by the time subscripts, the two transition probabilities are not constant.
The effects determining their changes over time are summarized in a switching index
s=st. An increase in st is supposed to increase the probability that a chartist becomes a
fundamentalist, and to decrease the probability that a fundamentalist becomes a chartist.
Assuming that the relative changes of πcf

t and πfc
t in response to the changes in st are

linear and symmetrical, the specification of the transition probabilities reads (where ‘exp’
is the exponential function), 13

πcf
t = πcf (st) = ν exp(st) , πfc

t = πfc(st) = ν exp(−st) (7)

Certainly, (7) ensures positive values of the probabilities. They also remain below unity
if the switching index is bounded and ν is sufficiently low. 14

A special feature of (7) is πcf
t = πfc

t = ν > 0 in a situation st = 0. Hence even
in the absence of active feedback forces in the switching index, or when the different
feedback variables behind st neutralize each other, the individual agents will still change
their strategy with a positive probability. These reversals, which can occur in either
direction, are ascribed to idiosyncratic circumstances. Although they appear as purely
random from a macroscopic point of view, in the aggregate they will only cancel out in
a balanced state when xt = 0. For nonzero values of the switching index, on the other
hand, the coefficient ν measures the general responsiveness of the transition probabilities
to the socio-economic aspects summarized in st. So ν may be generally characterized as
a flexibility parameter (Weidlich and Haag, 1983, p. 41).

The switching index itself is specified as follows,

12 In contrast to the more elaborate treatment in Lux (1995, 1997), this reasoning, which can also
be found in Lux (1998, p. 149), is sufficient for an infinite population. A rigorous mathematical
argument that begins with a finite population size and the intrinsic noise it implies is spelled out
in Franke (2008a or 2008b).
13 The precise hypothesis is dπcf

t /πcf
t = α dst and dπfc

t /πfc
t = −α dst for some constant α, which

may be unity without loss of generality (since st may be arbitrarily scaled). Integrating these
relationships with an integration constant ν yields (7).
14 Since it was checked in the numerical simulations that the upper-bound was never reached,
this constraint does not need to be mentioned in (7).
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st = s(xt, pt) := αo + ax xt + αm · (pt − p�
t )

2 (8)

The coefficient αo can be interpreted as a predisposition parameter, since in a state where
the other effects in (8) cancel out, a positive αo gives rise to a probability πcf

t of switching
from chartism to fundamentalism that exceeds ν = ν ·exp(0), while the reverse probability
πcf

t is less than ν (and vice versa for αo < 0).
The second term on the right-hand side of (8) captures the idea of herding. The more

traders are already fundamentalists (i.e. the higher xt), the higher the probability that
the remaining chartists will also convert to fundamentalism (and vice versa, since xt < 0
if chartists are in the majority). In addition, it will be seen in the analysis below that
suitable values of αx, which may be called a herding parameter, can give rise to one, two
or three equilibrium points of the deterministic skeleton of the model. 15

With αm > 0, the third term in (8) measures the influence of misalignment, or dis-
tortion. The idea behind it also has some empirical support. It states that when the
price is further away from its fundamental value, “professionals tend more and more to
anticipate” its “mean-reversion towards equilibrium” (Menkhoff et al., 2009, p. 251). In
our context, this means that the probability of becoming a fundamentalist rises. The
underlying expectations should actually be self-fulfilling and should constitute a sta-
bilizing mechanism, by virtue of the negative feedback in the core demand (1) of the
fundamentalists.

To sum up, the two central dynamic equations of the model are (i) the price adjust-
ments (4), (5) with the structural stochastic volatility component σ2

t , and (ii) the changes
in the majority index xt described in (6) – (8), which basically represent a herding dy-
namics curbed by a control for strong price misalignment. The pivotal point of the model
is that the time-varying population shares from the mechanism in (ii) feed back on the
variance σ2

t in (i) and may therefore lead to variations in price volatility.

3. How the model functions

3.1. The deterministic skeleton

Although the structural stochastic volatility in form of the time-varying variance in (5)
is essential to the model’s desired properties, it is useful to analyze the deterministic
skeleton in order to understand how the model works. To this end, we first study the
number of equilibrium points and their location as two of the parameters in the switching
index (8) are varied. Subsequently, the nature of the resulting dynamics is sketched
in phase diagrams in the (xt, pt)-plane. The discussion does not deal with all of the

15 There are several stories about the ways in which xt influences the transition probabilities.
If the individual agents base their switching decision on the publicly available knowledge of the
current majority index, these observations might also involve some noise. We disregard this option
for simplicity.
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phenomena that are a priori possible. Instead, we concentrate on the cases that lead,
step by step, to the scenario that will generate the stochastic trajectories with the desired
properties.

To begin with the deterministic equilibrium points, it is clear from the market maker
equation (4) that the price is at rest if and only if it coincides with the fundamental value
p�. On the other hand, as it is typical for models employing the switching mechanism
(6), (7), the majority index can attain multiple equilibrium values. The cases of interest
to us are collected in a separate proposition. Its proof is given in Appendix A2.

Proposition 1

A stationary point of the deterministic skeleton of the dynamic system formulated in
Section 2 is constituted by a price p = p�, while the following cases can be distinguished
for the majority index x:

1. If the herding parameter satisfies 0 < αx < 1, then there exists a unique interior
equilibrium value xo of the majority index.

2. If the herding parameter exceeds unity and the predisposition parameter is zero,
αx > 1 and αo = 0, then there exist three equilibrium values xcd, xo, xfd of the
majority index, with −1 < xcd < xo < xfd < 1. This configuration is maintained
if αo is moderately lowered below zero.

3. If for given αx > 1 the predisposition parameter αo is sufficiently negative, then
again a unique interior equilibrium value xcd of the majority index exists, which
is closer to −1 than the value of xcd brought about by αo = 0.

Clearly, the superscript cd for the majority index indicates a distribution of trading
rules where the chartists dominate, and fd represents one where fundamentalism is dom-
inant. 16 Often multiple equilibria configurations, such as that in (b), are a good basis
for interesting dynamic phenomena; in particular, because the outer equilibria typically
prove to be attracting and can thus be said to describe ‘bubble equilibria’, i.e. a persis-
tently bullish or bearish market, respectively (a characteristic example of this is analyzed
in Lux, 1995). In the present model, however, it is part (c) with its dominance of chartists
that will turn out to be the most promising situation for our purposes.

In the next step of the analysis we turn to the deterministic motions of the market frac-
tions of traders. We need to know in which regions of the state space the majority index
rises or falls. As is easily seen from (6) – (8), the change in x depends only on the contem-
poraneous values of x itself and the price. Hence the movements of the majority index
can be conveniently sketched in the (projection onto the) phase plane for the variables

16 Symmetrically to point (c) in the proposition, a sufficiently positive predisposition parameter
αo would establish a unique equilibrium value of x = xfd where fundamentalism takes over. As
has just been stated, this situation will be of no concern to us.
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(xt, pt). The basic information for this is given by the isoclines Δxt+1 = xt+1 − xt = 0,
that is, the geometric locus of all pairs (xt, pt) on which (6) – (8) would temporarily cause
xt to come to a halt. The description of the isoclines and whether xt increases/decreases
above or below them in the plane makes use of the following function g(·) of the majority
index,

g(x) := αo + αx x − 1
2

ln
[1 + x

1 − x

]
(9)

The analytical conditions on the combinations of (xt, pt) under which xt rises or falls are
summarized by the next proposition. Its proof is again relegated to Appendix A2.

Proposition 2

1. Suppose the majority index in a period t brings about g(xt) = 0. Then xt+1 > xt

if at the same time pt �= p�, and xt+1 = xt if pt equals the fundamental value.

2. The case g(xt) > 0 implies xt+1 > xt , irrespective of the current level of the
price.

3. Suppose g(xt) < 0 . Then xt+1 > xt if either

pt > p� +
√
−g(xt)/αm or pt < p� −

√
−g(xt)/αm .

Furthermore, xt+1 = xt if equality prevails in these relationships, and xt+1 < xt

if the inequality signs are reversed.

The geometric locus of the isocline Δxt+1 = 0 is therefore given by the equality rela-
tionship in Proposition 2.3. Deducing the properties of g(·) and the square root function
from a general mathematical analysis would be possible but rather cumbersome. On the
other hand, a few numerical examples are sufficiently informative about the shape of
the isocline in the phase plane and the cases of different branches that may have to
be distinguished (in the latter case we may also use the plural, isoclines). As can be
seen from Proposition 2, the isocline depends on the three parameters αo, αx, αm in the
switching function only. For a plot of some typical trajectories, however, the other reac-
tion coefficients are required as well. Table 1 presents a benchmark parameter scenario
for this investigation. Including the standard deviations for the noise terms, it actually
anticipates the result of the estimation further below, where the underlying time unit is
one day. Of course, the values p� = 0 and μ = 0.010 are just a matter of scaling.

Figure 1 presents a couple of phase plots of the deterministic skeleton of the model.
That is, σf and σc are temporarily set equal to zero. The other coefficients are taken from
Table 1, except that αo and αm are modified from one panel to another, as indicated in
their titles. The isoclines Δxt+1 = 0 are given by the thin (green) lines, and some typical
trajectories are depicted by the bold (blue) lines, where the arrows point in the direc-
tion of the motion. Although the curves result from a discrete-time system, connecting

10



φ 0.198 aggressiveness of fundamentalists in the market
χ 2.263 aggressiveness of chartists
σf 0.782 noise in fundamentalist demand
σc 1.851 noise in chartist demand

μ 0.010 market impact factor of demand
p� 0.000 log of fundamental value

ν 0.050 flexibility parameter in the population dynamics
αo −0.155 predisposition parameter in the switching index
αx 1.299 herding parameter in the switching index
αm 12.648 misalignment parameter

Table 1: Numerical benchmark parameters (rounded).

points (xt, pt), (xt+1, pt+1), etc., they are practically as smooth as the trajectories from
a continuous-time version of the model.

The top-left panel sets αo = 0, and thus covers the case of Proposition 1(b) with its
three equilibrium points. The sample trajectories illustrate the fact, which could also
be proved analytically, that the inner equilibrium (xo, p�) = (0, 0) is unstable, and that
the two outer equilibria (xcd, p�) and (xfd, p�) are locally attracting. It should, however,
be added that convergence towards them is very slow. The main reason for this is the
relatively low value of φ in comparison with χ, which leaves only a small scope for the
mean-reverting tendencies from the fundamentalist strategy. The same holds true for the
other scenarios in Figure 1. We checked that, quite in line with the observation on eq. (4)
for the two cases xt ≡ 1 and xt ≡ −1, the largest eigen-value of the Jacobian matrix is
indeed always close to unity (though still less than one).

The Δxt+1 = 0 isoclines in the left and right half of the plane move towards each other
as the predisposition towards chartism moderately increases, that is, as αo decreases.
The upper-right panel in Figure 1 shows this for αo = −0.10. So far, however, the
trajectories remain qualitatively unaffected. The system undergoes a structural change
when a stronger bias towards chartism (a stronger fall of αo) rules out a possible herding
towards persistent fundamentalism, as stated in Proposition 1(c). When αo declines, the
two equilibria (xo, p�) and (xfd, p�) first collapse into a single point and then dissolve, so
that the two original isoclines are now connected. This has happened in the middle-left
panel, where αo attains the value of the benchmark scenario from Table 1, αo = −0.155.

The chartist equilibrium (xcd, p�) is not only unique but also globally stable. This
derives from the fact that the price increases (decreases) if pt < p� (if pt > p�); that the
majority index xt decreases if the system is inside the region bounded by the upper and
lower branch of the isocline; and that eventually every trajectory will enter this region
(which can also be algebraically verified). In particular, further away from the isocline
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Figure 1: Phase diagrams of the deterministic skeleton (parameters from Table 1).

the price reactions are so slow relative to the strategy changes that the motions of (xt, pt)
trace out almost horizontal lines.

The trajectory starting in the lower-left corner of the middle-left panel illustrates the
stabilizing force of the misalignment component in the switching mechanism (represented
by the parameter αm in (8)). Due to the strong initial misalignment, the market first
moves straight into the fundamentalist region. However, there is no more fundamentalist
equilibrium towards which it could converge or around which it could fluctuate. Hence,
sooner or later such a trajectory would return to the chartist region. On this path,
the switches in strategy will again be relatively fast once the trajectory disconnects
from the isocline in the local maximum (minimum) in the lower (upper) half of the
phase plane. Now the price misalignment is of secondary importance, and the herding
mechanism reinforced by the predisposition effect (the behavioural bias towards chartism)
re-establishes a chartist regime.

The main features of the Δxt+1 = 0 isocline are maintained under the parameter
variations considered in the remaining three panels of Figure 1. As shown in the middle-
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right panel, it makes good sense that a stronger predisposition towards chartism (a
further ceteris paribus decrease in αo) enlarges the region where convergence takes the
form of a declining xt, i.e. where the market fraction of the chartists steadily increases.
Likewise, a weaker or stronger influence of price misalignment (lower or higher values of
the coefficient αm in the lower two panels, with αo reset to −0.155)) widen or narrow,
respectively, this region in the phase space with its dominance of the herding mechanism.

In sum, the diagrams in Figure 1 illustrate how alternative values of predisposition αo

and the misalignment coefficient αm may affect the location and shape of the isoclines
as well as the way in which convergence takes place. Given that the general noise level
σ2

t in (5) depends on the market fractions of fundamentalists and chartists, this will also
have a bearing on the stochastic properties of the system. In the next subsection it will
be argued that there is even scope for volatility clustering.

3.2. The stochastic dynamics

Let us now study the full model with the daily random perturbations to the price in-
cluded. The numerical parameters are those from Table 1. On the basis of the determinis-
tic dynamics in the middle-left panel of Figure 1, a first and immediate idea might be that
not many interesting things can happen here since the market will eventually settle down
in a region around the unique and globally stable chartist equilibrium. While the general
noise σ2

t in the system would perhaps be high, the variations of the resulting volatility
of the returns would be rather limited, leaving not much room for long memory effects
or a non-normal distribution of the returns. This reasoning, however, does not take into
account that a sequence of the random shocks εt in (4) may cause the system to jump
across the Δxt+1 = 0 isocline. If this happens at a stage where xt has declined towards
the chartist equilibrium value and the noise level σ2

t from (5) has increased accordingly,
the motion would be reversed towards fundamentalism and σ2

t may even systematically
decline again for a while.

In order to check whether events of this type might be able to lead to significant
clusters of low and high volatility, the model has to be simulated. The first three panels
in Figure 2 present a sample run over 6867 days. These roughly 27 years cover the same
time span as the empirical returns from the S&P 500 stock market index, which is plotted
in the bottom panel. 17

The top panel in the figure illustrates the model-generated fluctuations of the (log)
price around the fundamental value p� =0. They clearly reproduce the informal stylized
fact of fairly long and irregular swings with a considerable amplitude. The second panel
displays the corresponding composition of the traders in the form of the market share
of chartists, nc

t/2N = (1−xt)/2 as stated in (3). It shows that the market is ruled by

17 Reckoning 250 days per year. Specifically, the empirical sample period is January 1980 to March
2007 (just before the financial crisis began to unfold).
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Figure 2: Sample run of the model and empirical daily returns.

Note: Numerical parameters from Table 1. Vertical dotted lines indicate the subperiods shown
in Figure 3 below.

the fundamentalists most of the time. Every now and then, however, a relatively rapid
motion to a chartist regime is observed. Normally these regimes do not last very long,
although there are exceptions where chartists are in the majority for even more than one
year (roughly 300 days from t = 3450 onward).

Comparing the two panels, it can be seen that fundamentalists take over in the presence
of stronger mispricing, and chartists only gain ground when the price returns to the
fundamental benchmark. This phenomenon is easily explained by the term αm (pt − p�

t )
2

in the switching index st in (8), higher values of which increase the probability that the
agents convert to fundamentalism rather than to chartism. In combination with the other
parameters, αm ≈ 12 is high enough for this mechanism to become effective.

The third panel in Figure 2 demonstrates the implications of the irregular regime
switches for the returns rt, which are specified in percentage points,

rt := 100 · (pt − pt−1) (10)
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Owing to the greater variability in chartist demand vis-à-vis fundamentalist demand,
σ2

c > σ2
f in (1), (2) or (4), (5), respectively, the noise level in the returns during a

chartist regime exceeds the level in a fundamentalist regime. Since the fundamentalists
dominate the market over longer periods of time, it looks as if a certain “normal” noise
in the returns is occasionally interrupted by outbursts of increased volatility. In other
words, the pattern in the evolution of the simulated returns can indeed be characterized
as volatility clustering.

The bottom panel in the diagram displays the daily returns from the S&P 500 over
the same time horizon. A comparison with the third panel shows that the qualitative
pattern of the alternation of periods of tranquillity and volatility in the returns is similar
for the simulated and empirical series. Also the quantitative outbursts are comparable in
size (note that the two panels do not have the same scale). Differences can be seen in the
band width of the returns in the periods of relative tranquillity. While the noise level is
then constant in the simulated series, the empirical series exhibits certain changes from
the first, say, 1800 days of the sample to the period between t=3000 and t=4000, where
the band becomes narrower, and from there to the end of the series, where the band
again widens somewhat. Obviously, a simple model cannot easily endogenize these more
refined ‘regime shifts’, if they were found to be significant at all.

To obtain a better understanding of what we observe in the time series diagrams, let
us follow the dynamic evolution of the market over six consecutive subperiods in the
phase diagrams of Figure 3. These periods are indicated by the vertical dotted lines in
Figure 2. The Δxt+1 = 0 isocline is reproduced from the middle-left panel in Figure 1,
but the vertical price axis now covers a wider range.

The discussion of Figure 3 begins at t = 1750, when the system is at (xt, pt) =
(0.64, 0.036) and the chartist share amounts to 18 per cent. The system remains in the
inner region bounded by the two branches of the Δxt+1 =0 isocline and hovers around
the fundamental value for more than one hundred days. Then the shocks start to shift
the market to the upper isocline. Eventually, after 8.5 months at t = 1927, the market
crosses it—at a time when the market fraction of the chartists has risen to almost 80 per
cent. From then on, the trajectory (essentially) stays above the isocline for the next few
hundred days, and the misalignment mechanism in the switching index leads the market
to a fundamentalist regime. Note that it nevertheless takes a while until the chartist
share falls again below values of, say, 20 or 10 per cent.

The second panel in Figure 3 sets in at t = 2150; its starting point at (xt, pt) =
(0.34, 0.086) is the final point in the first panel. From here, the system moves up the
isocline, and after about half of the second subperiod it returns into the inner region,
so that the fundamentalist regime eases off somewhat. In fact, at the end, around t =
2550, the system is close to the situation where it had started from in the first panel.
The third (middle-left) panel, however, shows that this time the dynamics leaves the
inner region much earlier and downwards across the lower isocline, from which time on
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Figure 3: Subperiods of sample run from Figure 2 in the phase plane.

Note: As indicated by the (red) empty dots, panel 1 (top-left) starts from (x, p) = (0.64, 0.036),
panel 2 (top-right) from (0.34, 0.086), panel 3 (middle-left) from (0.39, 0.018), panel 4 from
(0.92,−0.205), panel 5 from (0.51,−0.056), and panel 6 from (−0.73,−0.119).

the price remains below the fundamental value. Consequently, the dynamics re-enters a
pronounced fundamentalist regime. At the end of the third and for most of the fourth
subperiod, it crawls up and down the outer lower branch of the isocline in the lower-right
corner of the two panels.

At the end of the fourth subperiod, from approximately t = 3290 on, the system
continues to stay in the inner region, where we also find the starting point of the fifth
subperiod. Although it is close to the boundary, it does not cross it once again. Instead,
the system moves relatively quickly towards the chartist equilibrium; it takes 120 days
until at t = 3471 the chartist share begins to stabilize between 85 and 92 per cent.
Correspondingly, at this stage the market fluctuates up and down the steep part of
the Δxt+1-isocline. At the end of the fifth and the beginning of the sixth subperiod,
the trajectory moves slightly to the right in the phase diagrams, then for a short while
returns to the chartist equilibrium, until finally the shocks drive the price so low that the
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market rushes towards the fundamentalist regime in the lower-right corner in the sixth
phase diagram.

To summarize this discussion, the deterministic structure of the model establishes, in
particular, the nonlinear Δxt+1 =0 isocline, from which we can see in which subregions of
the phase space the market share of the chartists systematically increases and decreases.
The random forces are, however, strong enough to lead the dynamics towards and across
the isocline. On the other hand, they are not strong enough to let the market permanently
fluctuate back and forth near this geometric locus. Occasionally, the deterministic core
of the model becomes dominant, that is, the market remains on one side of the isocline
for a longer time, implying that it changes from a more or less fundamentalist regime to
a chartist regime, or vice versa.

On the whole, the present numerical scenario renders these mechanisms so effective
that we obtain the volatility clustering of the temporary chartist markets demonstrated
in Figure 2. We may furthermore expect that this pattern of the returns gives rise to a
non-normal distribution or fat tails, respectively. This is certainly a qualitatively satis-
factory result. In the next section, we must make sure that the usual summary statistics
describing these phenomena also match their empirical counterparts in a quantitatively
satisfactory manner.

4. Estimation of the model

4.1. The method of simulated moments

The model has been designed to explain—at least partially—the most important stylized
facts of financial markets. 18 Referring to the price changes at daily intervals, we aim to
check the four features that have received the most attention in the literature on agent-
based models. These are the absence of autocorrelations in the raw returns, fat tails in
their frequency distributions, volatility clustering, and long memory (see Chen et al.,
2008, p. 19). 19 For the quantitative analysis, we measure these features by a number of
summary statistics or, synonymously, moments. The first moment is the volatility of the
returns, which we define as the mean value of the absolute returns vt = |rt| (here and
in the autocorrelations below it makes no great difference whether one works with the
absolute or squared returns). Reproducing it is basically a matter of scaling. In the first
instance, it should have a bearing on the admissible general noise level in the model,
as it is brought about by the two variances σ2

f and σ2
c . The second moment is the first-

18 Detailed descriptions of the statistical properties of asset prices can be found in Cont (2001),
Lux and Ausloos (2002), or Lux (2009b).
19 Generally, one might also include a negative skewness of stock returns. Stylized small-scale
asset pricing models, such as the present one, do not, however, provide for any asymmetry in this
respect.
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order autocorrelation of the raw returns. The requirement that it be close to zero should
balance the reaction intensities of the chartists and fundamentalists in the form of the
parameters χ and φ (as χ is conducive to positive and φ to negative autocorrelations). On
the other hand, we checked that if this moment is matched, the autocorrelations at the
longer lags will practically all vanish, too. Because of this lack of additional information,
it suffices to make use of only one moment of the raw returns.

Next, in order to capture the long memory effects, we invoke the autocorrelation
function (ACF) of the absolute returns vt up to a lag of 100 days. As the ACF slowly
decays without becoming insignificant at the long lags, we have an entire profile to match.
We view it as being sufficiently well represented by the six coefficients for the lags τ =
1, 5, 10, 25, 50, 100. The influence of accidental outliers that may occur here is reduced
by using the centred three-lag averages. 20 Lastly, the fat tail property is measured by
the well-known Hill estimator of the tail index of the absolute returns, where the tail
is conveniently specified as the upper 5 per cent. Thus, on the whole, we evaluate the
performance of the model on the basis of nine moments, which we collect in a (column)
vector m = (m1, . . . , m9)′ (the prime denotes transposition).

It has already been indicated that the simulated moments from the model should be
as close as possible to the empirical moments that we compute for the daily returns of
the S&P 500 stock market index. To make the informal summary of “fairly close” more
precise in a formal estimation procedure, it is only natural for us to employ the method
of simulated moments (MSM). To this end, an objective function, or loss function, has to
be set up that defines a distance between two moment vectors. It is given by a quadratic
function, which is characterized by a weighting matrix W ∈ IR9×9 (to be specified shortly).
Considering the general situation where a moment vector m ∈ IR9 is to be compared to
another set of reference moments mref ∈ IR9, the function reads,

J = J(m, mref ) := (m − mref )′ W (m − mref ) (11)

The weighting matrix takes the sampling variability of the moments into account. The
basic idea is that the higher the sampling variability of a given moment i, the larger the
differences between mi and mref

i that can still be deemed insignificant. The loss function
can account for such a higher tolerance by correspondingly smaller diagonal elements
wii. In addition, matrix W should provide for possible correlations between the single
moments. These two tasks are fulfilled by specifying the weighting matrix as the inverse
of an estimated variance-covariance matrix Σ̂ of the moments,

W = Σ̂
−1

(12)

20 That is, at lag τ the mean of the three autocorrelation coefficients for τ−1, τ , τ+1 is computed,
except for τ = 1, where it is the average of the first and second coefficient. It may also be noted
that volatility clustering, which describes the tendency of large changes in the asset price to be
followed by large changes, and small changes to be followed by small changes, is closely related
to these long-term dependencies between the returns.
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An obvious, since asymptotically optimal, choice for W would be the inverse of a Newey-
West estimator of the long-run covariance matrix of the empirical moments (see, e.g.,
Lee and Ingram, 1991, p. 202, or the application of MSM in Franke, 2009, Section 2.2).
Optimality, however, does not necessarily carry over to small samples. 21 We therefore
choose a bootstrap procedure to construct, from the empirical observations, additional
samples and derive the covariances in Σ̂ from them. We nevertheless depart from the
block bootstraps that have been used in Winker et al. (2007) or Franke and Westerhoff
(2011a,b), since the original long-range dependence in the return series is interrupted
every time two non-adjacent blocks are pasted. The fact that our estimation is concerned
with summary statistics and not the one-period ahead predictions of a time series allows
us to sample the single days and, associated with each of them, the history of the past
few lags required to calculate the lagged autocorrelations. Avoiding thus the join-point
problem, this alternative seems more trustworthy than a block bootstrap (see Appendix
A3 for details).

The bootstrap gives us a collection of b = 1, . . . , B values for each of the nine moments,
where B = 5000 is large enough (indices b may be identified with the random seed for
the sequence of the (pseudo-)random numbers that set up the single bootstrap samples).
Letting mb = (mb

1, . . . , mb
9)

′ be the corresponding moment vectors and computing the
vector of their mean values m: := (1/B)

∑
b mb, the bootstrap estimate of the moment

covariance matrix Σ̂ in (12) is given by

Σ̂ =
1
B

B∑
b=1

(mb − m:)(mb − m:)′ (13)

We are now ready to turn to the estimation problem. 22 With respect to T = 6866, the
length of the empirical sample of the returns, denote the moments computed from it
by memp

T . Let θ be the vector of the model parameters to be estimated. While they are
generally contained in a certain set, beginning with possible nonnegativity constraints, we
can omit an explicit reference to it since no estimated values or their confidence intervals
will have any problem in this respect. MSM, then, means finding a parameter vector θ

such that the simulated moments to which it gives rise minimize the loss function.
To limit the variability in the stochastic simulations, their sample size, designated S,

should be appreciably larger than the number of the empirical observations T , where
S/T = 10 is a common proportion (S is the effective simulation size, after discarding the
first few hundred days to rule out any transient effects). Furthermore, the comparability
of different trials of θ requires them to have the same random number sequence under-

21 To reduce the thus arising bias, even the identity matrix could be a superior weighting matrix;
see Altonji and Segal (1996).
22 We checked that the weighting matrix resulting from our bootstrap procedure is indeed positive
definite.
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lying. 23 The latter are determined by a random seed, which we generally identify by an
integer number, such as a = 1, 2, . . . , for example. Thus, the moment vector obtained by
simulating the model with a parameter vector θ over S periods on the basis of a random
seed a is denoted as ma(θ; S). The parameter estimates based on this random seed a

read θ̂a, and are the solution of the following minimization problem, 24

θ̂a = arg min
θ

J [ ma(θ;S),memp
T ] , S = 10 · T (14)

The fundamental value p� and the market impact factor μ are two parameters in the
model that just serve scaling purposes. We exogenously fix them at p� = 0 and μ = 0.010.
The flexibility parameter ν approximately scales the switching index st (this would be ex-
act if exp(·) were a linear function). Given the interpretation of ν in the remark on eq. (7)
as an ‘autonomous’ switching probability, its value should be distinctly below unity. Here
we choose ν = 0.050, which says that in the hypothetical absence of predisposition and
any other influences, an agent would on average change his strategy every 20 days, i.e.
every month. 25 On the whole, there are thus seven parameters left to estimate.

Although it might seem that a simulation over S = 68660 days generates a large sample
to base the moments on, the variability arising from such different samples still turns
out to be considerable. Hence it would not be pertinent to pick out an arbitrary random
seed and present the corresponding results. This way, we may simply be lucky or unlucky
and obtain a particularly good or bad match. Therefore, when for a succinct estimation
summary we will have to settle on a specific parameter set, the loss J it produces should
be more or less ‘representative’, in the sense of an expected value.

To this end, it seems most appropriate to carry out a great number of estimations
and choose the one with an average loss. In detail, 1000 estimations will suffice. We then
select the parameter set θ̂, the associated loss of which is the median value of the entire
distribution of the 1000 estimated losses. Formally, with reference to (14),

θ̂ = θ̂ ã , where ã is such that Ĵ ã is the median of {Ĵa}1000
a=1 , and

Ĵa = J [ma(θ̂a;S),memp
T ] , a = 1, . . . , 1000

(15)

The parameter vector θ̂ resulting from this battery of estimations has already been
reported in Table 1. For convenience, it is reproduced in the first row of Table 2 below.

23 For the normally distributed εt with variance σ2
t in (4), (5), this means, more precisely, that

for each simulation run at time t the same random number ε̃t is drawn from the standard normal
distribution N(0, 1) and εt is set as σt ε̃t.
24 We use the Nelder-Mead simplex search algorithm (see Press et al., 1986, pp. 289–293) and
restart it upon convergence several times until no further noteworthy improvement in the mini-
mization occurs.
25 Admittedly, the value ν = 0.57 in Franke and Westerhoff (2011a) is psychologically not very
convincing.
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The corresponding minimized loss amounts to 7.28, 26

Ĵ := J [mã(θ̂;S),memp
T ] = 7.28 (16)

4.2. Evaluation of the estimation results

As such, the figure in eq. (16) is not very informative. To put it into perspective,
whether it indicates a good or a bad overall match of the moments, we make use of
another bootstrap procedure. 27 This time it is a parametric bootstrap, which means we
work with the null hypothesis that there is a parameter vector θo for which the model
is a true description of the aspects of the stock market summarized by our moments. In
other words, the moments simulated with θo over an infinite time horizon are assumed
to be drawn from the same distribution as the data in the real world. In practice, of
course, we have to resort to just one finite sample memp

T of empirical moments, while the
true parameters θo are proxied by the estimated parameters θ̂ and we have to be content
with the moments from finite simulations of the model.

Nevertheless, the null hypothesis allows us to produce as many returns series and
artificial moment vectors as we like—and to re-estimate the model on them. In this way,
we obtain an entire distribution of minimized losses, to which we can then compare
our benchmark value Ĵ from (16). If the null applies and the empirical moments, too,
could therefore have been generated by the model, Ĵ should be in the range of that loss
distribution. Conversely, the null has to be rejected, and it must be concluded that the
model is definitely incompatible with the data at a 5% significance level, if Ĵ exceeds the
95% quantile of the distribution.

In detail, take the estimated parameter vector θ̂, consider c = 1, . . . , 1000 different
random seeds, simulate the model over the empirical time horizon for each of them,
compute the moments mc(θ̂;T ) from these series, and then re-estimate the model on the
latter. 28 These MSM estimations are carried out on the basis of different random seeds
d = 1, . . . , 1000, one such d for each artificial sample mc(θ̂; T ). This procedure provides
us with a distribution of estimated parameters θ̂d and their losses Ĵd,

θ̂d = arg min
θ

J [md(θ;S),mc(θ̂;T ) ] , (c, d) = 1, . . . , 1000 (17)

26 This value can be slightly reduced to Ĵ = 6.98 by treating ν as a free parameter, too. We then
get a higher value ν = 0.067 which, however, is something that we had sought to avoid. Besides,
given the random seed ã, a marginal improvement, J = 7.16, can also be obtained by a lower
value of the flexibility parameter, ν = 0.033.
27 In Franke and Westerhoff (2011a,b), we discussed statistical measures that could characterize
the matching of the single moments.
28 To perfectly imitate the original estimation, one would also have to take into account that
different return series rc

t (in obvious notation) give rise to different weighting matrices in the loss
function. Unfortunately, this would mean carrying out an extra bootstrap for each of the 1000
artificial samples. We refrain from this additional computational effort and employ the original
weighting matrix W from (12), (13) for all of the re-estimations.
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φ χ σf σc αo αx αm p

Est. 0.198 2.263 0.782 1.851 −0.155 1.299 12.65 17.3

Lower: 0.145 1.621 0.737 1.531 −0.194 1.265 7.97 8.7
Upper: 0.239 2.571 0.837 2.119 −0.132 1.498 15.36 32.6

Table 2: Estimation results (rounded).

Note: Exogenously fixed are μ = 0.010, p� = 0, ν = 0.050. The first row is the ‘representative’
estimation (15), with the p-value from (19) (all p-values in per cent). The two bottom rows
indicate the 95% confidence intervals for the distributions of θ̂d in (17) and pa in (20); the Hall
percentile intervals for the former (as explained in Appendix A4) and the standard percentile
intervals for the latter. Bold face figures summarize the overall model evaluation.

Ĵd = J [md(θ̂d;S),mc(θ̂; T ) ] (18)

where, with a slight slip in notation, the pairs (c, d) are also referred to by the integers
1, . . . , 1000. The critical value for our test of the model’s goodness-of-fit is the 95%
quantile of the loss distribution {Ĵd}1000

d=1 , which results as J0.95 = 13.23. Since Ĵ from
(16) falls short of it we fail to reject the null hypothesis, even by a wide margin as it
seems.

We can take a small step further than the reject-or-not decision and put forward a
quantitative evaluation of the model. This is readily done by deriving a p-value from the
loss distribution {Ĵd}. 29 With respect to the estimated loss in (16), it is given by

p-value = solution of
{

(1−p) quantile of {Ĵd} = Ĵ
}

(19)

This statistic says that if Ĵ were employed as a benchmark for model rejection, then p

is the error rate of falsely rejecting the null hypothesis that the model is true. Thus, if
the p-value exceeds the 5% level, it gives us an impression of the width of the margin
by which we fail to reject the null. Incidentally, it is also a particularly useful measure
if there are several models to compare. As reported by the last entry in the first row of
Table 2, we compute a p-value of 17.3% for the present model. Figure 4 illustrates the
concept with the additional information about the 95% quantile of the loss distribution
{Ĵd}. 30

29 Concerning symbol p, there should be no confusion with the log prices pt, which by now will
have disappeared from the scene.
30 The density functions in this and the next diagram are estimated using the Epanechnikov
kernel; see Davidson and MacKinnon (2004, pp. 678–683) for the computational details.
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J0.95Ĵ

Figure 4: Distribution {Ĵd} from (18), its 95% quantile J0.95,
and the estimated Ĵ from (16).

While the 17.3% error rate evaluates the model’s goodness-of-fit as it emerges from our
representative estimation, the same concept can be applied to the other losses Ĵa from
the original estimations on the empirical moments in (15). In this way, we also obtain an
entire distribution {pa} of p-values,

pa = solution of
{

(1−p) quantile of {Ĵd} = Ĵa
}

, a = 1, . . . , 1000 (20)

A 95% standard percentile interval gives us a reliable range over which, owing to the
small-sample variability in the simulations for the MSM estimations, the p-values can
vary; the upper and lower boundary are reported in the last column of Table 2. In
particular, the 2.5% quantile of {pa}, p = 8.7%, is a very conservative measure of the
model’s ability to generate the desired stylized facts. Still, even that value exceeds the
critical 5% level. 31 How much the range of the p-values in (20) could be narrowed by
adopting a larger simulation size S might be left for future research. 32

In concluding our investigation of the model’s general goodness-of-fit, it may be recalled
that the positive evaluation at which we arrived is conditional on the specific choice of
the moments the model is desired to match. Certainly, if more and qualitatively different
moments were added to the present list, for which (at least intentionally) the model was
not designed, the p-values will dwindle and eventually lead to a rejection.

In a last step, we wish to assess the precision of our representative parameter vector
θ̂ in (15). Standard errors for its components can be derived from the diagonal elements
of the covariance matrix of the parameters as it results from the asymptotic econometric
theory. 33 However, due to the considerable small-sample variability in our estimations

31 In fact, among the 1000 estimations there is only one case where pa is slightly below 5%.
32 Since a set of 1000 estimations on an average personal computer presently takes between 27
and 31 hours, an increase in S would require a parallel computing device.
33 See Lee and Ingram (1991, p. 202).
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(as evidenced by the relatively wide range of p-values), this approach may perhaps not
be wholly credible. On the other hand, we already have a distribution of 1000 parameters
from our bootstrap procedures, namely, the distribution {θ̂d} that we obtain from the
re-estimations in (17) under the null hypothesis of a true model. 34 They readily provide
us with confidence intervals for the single parameters.

Figure 5 shows the frequency distributions of the seven single components θ̂d
i , where the

shaded area indicates the probability mass of the standard percentile confidence intervals,
the lower and upper bounds of which are given by the 2.5% and 97.5% quantiles. It is
immediately apparent that all of the parameters are well identified. 35 We can therefore
say that the numerical specification of the model rests on solid grounds.

Figure 5: Distributions of parameter re-estimates θ̂d from (17).

Note: The shaded areas represent the standard 95% confidence intervals. The short vertical
bars (in red) indicate the benchmark estimates θ̂i from (15).

34 The estimates {θ̂a} in (15) only take the sample variability in the simulations into account but
not the variability arising from different realizations of the data generation process.
35 On the basis of a number of explorations, we are confident that the intervals continue to be
bounded and so the conclusion remains valid if ν is also treated as a free parameter.
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In finer detail, it has to be taken into account that, although the standard percentile
confidence intervals in Figure 5 are a straightforward specification, they may not have the
desired coverage probability. This is, for instance, the case with the distributions of χ or
αx, for which one may infer that the estimates from (15) are biased. This feature suggests
that the bootstrap distribution of these parameters will be asymptotically centred around
the pseudo-true value plus a bias term, which would imply that the intervals shown are the
95% confidence interval for the latter quantity. Thus, they may have a grossly distorted
range as a confidence interval for the pseudo-true parameter value. 36 An alternative
that solves the problem is Hall’s percentile confidence interval (see Appendix A4). This
is the reason why the lower and upper boundaries that we report in Table 2 are based
on this device. The Hall intervals for χ and αx, in particular, are seen here to be fairly
different from the intervals in Figure 5. The feature of a limited range of the intervals is,
of course, maintained. With this observation, we conclude the estimation of the model
and its evaluation.

5. Conclusion

Over the last decade, increased efforts have been made to create small-scale agent-based
models that are able to reproduce the stylized facts of financial markets, especially re-
garding the volatility clustering and fat tails of the daily returns. In previous work, we
put forward the concept of structural stochastic volatility which, despite its parsimony,
appeared to be fairly successful in this respect. Generally, it consists of two components.
First, the core excess demand of two groups of speculative traders, to each of which a
random term is added that is said to reflect the heterogeneity within the groups. Second,
a mechanism that governs endogenous switches of the agents between the two strategies.
If the noise terms differ in their variance, the variations of the two market fractions will
induce variations in the overall noise level of the asset demand, and thus in the returns.

In this paper, a version of this modelling device with fundamentalist and chartist
traders was reconsidered where the switching mechanism incorporates three socio-economic
principles: herding, a certain predisposition towards chartism, and a propensity to with-
draw from chartism as the gap between prices and the fundamental value widens. Beyond
a mere observation of the model’s ability to mimic the statistical regularities that we find
in the empirical daily returns, a deeper understanding of these phenomena was obtained

36 Even though the model may be misspecified, a pseudo-true parameter vector θo is a well-defined
concept. If mo is the expected moment vector of the true model of the stock market, θo satisfies
J [m(θo),mo] ≤ J [m(θ),mo] for all admissible θ, where m(θ) = limS→∞E[ma(θ; S)] (assuming
ergodicity, the expected values converge to the same limit for all random number sequences). This
definition corresponds to that in Hnatkovska et al. (2011, p. 6), where the expected moments of
the model can be analytically computed.
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by an analysis of the dynamics in the phase plane of the asset price pt and a strategy
majority index xt.

Since the systematic motions of xt are typically much faster than those of pt, the key
elements in this investigation are the isoclines of the majority index, i.e. the geometric
locus where temporarily, in the deterministic part of the model, Δxt+1 = 0. Our analysis
highlighted the fact that it is the synthesis of the deterministic and stochastic compo-
nents that make the model work. The deterministic part would be nothing without the
random forces, and the latter would remain ineffective without an appropriate shape of
the nonlinear Δxt+1 = 0 isoclines, which can be brought about by a skillful combination
of the behavioural parameters in the switching function.

While these parameters are essentially responsible for the qualitative volatility clus-
tering effects, the other parameters take care of the quantitative effects. The precise
numerical values were obtained here by a formal econometric estimation. As the ‘stylized
facts’ are readily described by a set of summary statistics, or ‘moments’, our method of
choice is the method of simulated moments (MSM), which seeks for values of the struc-
tural coefficients such that the simulated moments of the model come as close as possible
to their empirical counterparts.

In addition to finding suitable parameters, we advanced the concept of a p-value for the
model’s overall goodness-of-fit (conditional on the chosen moments, of course). Treating
the estimated model as the true data generation process, simulating samples of artificial
moments from it, and then re-estimating the model on them, this p-value is the original
estimation’s error rate of falsely rejecting the null hypothesis. It should be higher than
five per cent, and the higher it is, the better the fit. Moreover, by estimating the model
with MSM on the empirical moments a great number of times, we took account of the
problem of small-sample variability in the model simulations. In this way, we were able
to compute an entire distribution of p-values, one for each of these re-estimations, and
finally set up a confidence interval for them. Thus we arrived at an upper and lower
boundary for the p-values of 32.6% and 8.7%, respectively, which is the paper’s main
message to summarize the model’s performance.

On the whole, besides another application of MSM as a powerful estimation approach,
this paper proposed a further rigorous and simulation-based econometric test to quantify
the goodness-of-fit of an asset pricing model. We believe that the aforementioned figures
can be considered a success, and present a challenge to other models of similar complexity.
Regarding the analytical underpinnings of the present model’s dynamic properties, the
switching mechanism of which is based on the transition probability approach, it may
be worthwhile to attempt a similar analysis for its “twin” model, which is based on the
discrete choice approach and fared so well in the model contest discussed in Franke and
Westerhoff (2011b). In this sense, the paper is more of a stimulus for further research
than a final once-and-for-all result.
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Appendix A1: A note on the nature of variable x in the literature

The role of the majority index xt in an adjustment equation such as (6) may seem slightly
unclear in some of the literature, so that the concepts involved here may not always have
been fully understood. 37 In early publications, the equation was formulated after the
transition probabilities were utilized to set up the so-called Master equation. From this
point of view, the stochastic process is characterized not by the actual values of xt and
some other state variables, but by entire probability distributions of them, which are fur-
thermore subject to change over time. The adjustment equation, which is a deterministic
equation, is referred to here as “an approximative mean value equation for the original
stochastic system”, whose analysis “is sufficient to determine the most probable develop-
ment from any initial state.” Neglecting the other aspect of the probability distributions
can technically be justified “by the convenient assumption of a sharply peaked initial
distribution” (Lux, 1995, p. 885; emphasis in the original).

Two questions arise from these presentations. (1) As the probability distribution varies
over time, is it ensured that it remains so sharply peaked? 38 (2) Equilibrium (i.e. time-
invariant) probability distributions that have a bimodal density function are of particu-
lar interest. This implies that over longer periods of time a sample trajectory fluctuates
around some (low) value of the majority index, then eventually switches over into the
neighbourhood of another (high) value of x, fluctuates around it for another period of
time, until it switches back into a neighbourhood of the first value, etc. Since the proba-
bility distribution does not change during all this, its mean value does not change either.
The specific value it attains would indeed be some constant in an intermediate range
between the two more extreme values. In this situation, the assumption of peakedness
is violated, although the stochastic process itself is in its (unique) equilibrium. The ex-
pected value would only provide misleading information about what is actually going on
between the agents.

The ambiguities can be resolved by deriving the so-called Langevin equation for xt.
Although it looks similar to eq. (6), xt is here not an approximative mean value but the
actual value of the majority index in a sample trajectory. This equation can be viewed as
a stochastic adjustment rule for xt. In general, it includes an additive noise term with a
variance that decreases with the population size. It moreover becomes the deterministic
equation (6), i.e. the variance tends to zero, as the population size becomes infinitely
large.

For more information about the historical background of the transition probability
approach as well as a rigorous derivation of eq. (6) in a stochastic and the present deter-
ministic version, see Franke (2008a,b).

37 The present authors do not exempt themselves from this.
38 For a specific system, this question is answered by an explicit (elaborate) mathematical analysis
in Lux (1997, Sections 4.1 and 4.2).
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Appendix A2: Mathematical proofs

Proof of Proposition 1

To determine the equilibrium value(s) of the majority index, it proves useful to resort
to the definition of the hyperbolic sine and cosine (sinh and cosh). This allows us to
rewrite (6) and (7) as Δxt+1 := xt+1 − xt = 2ν { [exp(st) − exp(−st)]/2 − xt [exp(st) +
exp(−st)]/2 } = 2ν [sinh(st) − xt cosh(st)]. With tanh = sinh / cosh for the hyperbolic
tangent, we then get

Δxt+1 = xt+1 − xt = 2ν { tanh[s(xt, pt)] − xt } cosh[s(xt, pt)] (A1)

Since cosh is an everywhere positive function, Δxt+1 = 0 if and only if the term in
curly brackets vanishes. Hence, taking p = p� in the switching index (8) into account,
any equilibrium value of x has to satisfy the relationship tanh(αo + αxx) = x. Applying
the inverse function arctanh(·) to both sides of this equation and using the identity
arctanh(x) = (1/2) ln[(1+x)/(1−x)], the equilibrium condition for the majority index
can be reformulated as

g(x) := αx x − 1
2

ln
[1 + x

1 − x

]
+ αo = 0 (A2)

To locate the roots of the function g(·), note that it tends to +∞ as x approaches −1
from the right, and to −∞ as x approaches +1 from the left. In addition, the derivative
is computed as g′(x) = αx − 1/(1−x2). If, as in part (a) of the proposition, αx is
contained between zero and unity, g′(x) is negative over the entire domain. Hence a
unique equilibrium value xo exists in this case. 39

Consider next αx > 1 together with a zero intercept αo = 0 in the switching index.
One equilibrium value satisfying (A2) is then given by xo = 0, in which g(·) is now
upward sloping. Equating the derivative to zero, it is seen that g(·) has exactly one local
minimum between −1 and xo, in which g is negative, and (symmetrical to it) exactly one
local maximum between xo and +1, in which g is positive. From the limiting behaviour
of the function for x → ±1, we thus infer the existence of exactly two additional outer
equilibria; one between −1 and xo and the other between xo and +1. This proves part
(b) of the proposition.

As for part (c), fix αx > 1 and, starting from zero, let the predisposition parameter
αo decrease. Obviously, this shifts the function g(·) downwards. As a consequence, xo

and xfd move towards each other, xo as the interior and xfd as the outer-right point of
intersection of g(·) with the zero line. Eventually, as the downward shift of αo continues,
the local maximum of g(·) will be zero. When this occurs, xo and xfd collapse into
one single point of intersection. Subsequently, if αo decreases further, they disappear.

39 Incidentally, the argument remains the same if αx ≤ 0, although we would then have the
opposite of herding.
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Under these circumstances, xcd remains as the only equilibrium point, where the shifting
procedure has moved it monotonically to the left all the time. This observation completes
the proof. q.e.d.

Proof of Proposition 2

Given a pair (xt, pt), we have Δxt+1 ≥ 0 if and only if the term in curly brackets in (A1)
is nonnegative, or tanh[αo + αxxt + αd(pt−p�)2] ≥ xt . Applying the strictly increasing
arctanh function on both sides of the inequality and using the abovementioned identity
for arctanh(xt) as well as the definition of the function g(·), this relationship is equivalent
to g(xt) ≥ −αd (pt − p�)2. It is certainly fulfilled if g(xt) > 0 or, in the case g(xt) = 0,
if pt �= p�.

If g(xt) < 0, we can multiply the inequality by −1, which reverses the inequality
sign, and then take the square root on both sides. This yields the condition pt − p� ≥√−g(xt)/αd if pt > p� and pt − p� ≤ −√−g(xt)/αd if pt < p�. The remaining state-
ments in part (c) are obvious. q.e.d.

Appendix A3: Bootstrapping the empirical moments

Bootstrapping the empirical autocorrelations of rt and vt = |rt| requires a second thought.
As a representative example, consider the hth-order autocorrelation of vt (h ∈ IN), which
for a sample of size T reads,

ρv(h) = (1/T )
T∑

t=1+h

(vt − v̄) (vt−h − v̄) / s2
v ,

where v̄ = (1/T )
T∑

t=1

vt , s2
v = (1/T )

T∑
t=1

(vt − v̄)2

With a view to the bootstrap procedure to be specified shortly, it is convenient to define
the set of time indices

Io = { 1, 2, . . . , T }
and rewrite the autocorrelation as

ρemp
v (h) = (1/T )

∑
t∈Io

(vt − v̄) (vt−h − v̄) / s2
v (putting vt−h = v̄b if t−h ≤ 0)

(the superscript ‘emp’ has been added for greater clarity.)
Bootstrapping summary statistics that involve lagged values of the dynamic variables is

often carried out as a block bootstrap of the time series data. For longer lags h, however,
this is not an entirely satisfactory procedure because the independence between the
randomly selected single blocks cannot reproduce the dependence structure of the original
sample, a phenomenon known as the join-point problem. In addition, the variability of
various moments may thus be increased (cf. Andrews, 2004, p. 674).
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While these are serious problems in likelihood or dynamic regression estimations, 40

they can be circumvented in the present moment matching approach. To put up a boot-
strap sample b, we need not form a new series of consecutive data points and compute the
moments from them, but can sample directly from the time indices: alternatively to Io,
they give us a new set Ib on which we can base the same calculations as above (of course,
the same index set Ib for each of the moments, with and without lags). Accordingly, a
bootstrap sample in our approach is constituted by T random draws with replacement
from the set Io (each time index having the same probability 1/T ). Repeating this B

times, we have b = 1, . . . , B index sets

Ib = { tb1, t
b
2, . . . , tbT }

from which, analogously to the empirical magnitudes, we can subsequently obtain the
bootstrapped moments

ρb
v(h) = (1/T )

∑
t∈Ib

(vt − v̄b) (vt−h − v̄b) / (s2
v)

b , b = 1, . . . , B; (A3)

where vt−h = v̄b if t ≤ h , v̄b = (1/T )
∑
t∈Ib

vt , (s2
v)

b = (1/T )
∑
t∈Ib

(vt − v̄b)2

It might be noted that, while in an empirical autocorrelation ρemp
v (h) exactly h of the T

terms in the sum vanish, there may be more or less such zero terms in a bootstrapped
autocorrelation ρb

v(h). Given the large sample we have, however, this effect will be neg-
ligible.

The statistics computed according to (A3) are the components of the moment vectors
mb from which subsequently the covariance matrix Σ̂ in (13) is made up.

Appendix A4: Hall’s percentile confidence interval

Let a collection { θ̂b : b = 1, . . . , B } of parameter re-estimates be given. With respect to
a significance level α = 0.05, let θ̂i,L be such that only a fraction α/2 of all the bootstrap
estimates θ̂b

i are less than this value, and likewise let θ̂i,H be the value that is exceeded
by only α/2 of the bootstrap estimates. The standard percentile confidence interval is
then given by

CIS(θi) = [ θ̂i,L, θ̂i,H ] (A4)

(where the index S indicates that (A4) is regarded as the standard method). To fix
the problem that CIS(θi) will not have the desired coverage probability in the presence
of a bias, Hall’s percentile confidence interval is proposed. With respect to the original
estimate θ̂i on the empirical moments, it is defined as

CIH(θi) = [ 2θ̂i − θ̂i,H , 2θ̂i − θ̂i,L ] (A5)

40 For which Andrews (2004) proposes the concept of a block-block bootstrap.
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Letting θo
i be the pseudo-true parameter value, this specification is based on the idea that

the bootstrap distribution (θ̂b
i − θ̂i) approximates the distribution (θ̂i − θo

i ). This implies
that Prob(θ̂i,L− θ̂i < θ̂i−θo

i < θ̂i,H − θ̂i) ≈ Prob(θ̂i,L− θ̂i < θ̂b
i − θ̂i < θ̂i,H − θ̂i) = 1−α,

and the first probability expression is easily seen to be equal to Prob(2θ̂i − θ̂i,H < θo
i <

2θ̂i − θ̂i,L) = Prob(θo
i ∈ CIH(θi)). Hence Hall’s percentile method (A5) is asymptotically

correct.
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