
BAMBERGER BEITRÄGE

ZUR WIRTSCHAFTSINFORMATIK UND ANGEWANDTEN INFORMATIK

ISSN 0937-3349

Nr. 100

Nucleus – Unified Deployment and
Management for Platform as a Service

Cedric Röck, Stefan Kolb

April 2016

FAKULTÄT WIRTSCHAFTSINFORMATIK UND ANGEWANDTE INFORMATIK

OTTO-FRIEDRICH-UNIVERSITÄT BAMBERG

Nucleus – Unified Deployment and Management for
Platform as a Service
Cedric Röck, Stefan Kolb

Lehrstuhl für Praktische Informatik, Fakultät WIAI
Otto-Friedrich-Universität Bamberg
An der Weberei 5, 96047 Bamberg

https://github.com/stefan-kolb/nucleus

Abstract

Cloud computing promises several advantages over classic IT models and has undoubtedly
been one of the most hyped topics in the industry over the last couple of years. Besides
the established delivery models Infrastructure as a Service (IaaS) and Software as a Ser-
vice (SaaS), especially Platform as a Service (PaaS) has attracted significant attention these
days. PaaS facilitates the hosting of scalable applications in the cloud by providing managed
and highly automated application environments. Although most offerings are conceptually
comparable to each other, the interfaces for application deployment and management va-
ry greatly between vendors. Despite providing similar functionalities, technically different
workflows and commands provoke vendor lock-in and hinder portability as well as inter-
operability. In this study, we present the tool Nucleus, which realizes a unified interface for
application deployment and management among cloud platforms. With its help, we aim to
increase the portability of PaaS applications and thus help to avoid critical vendor lock-in
effects.

Keywords

Cloud Computing, Platform as a Service, Portability, Interoperability, API

https://github.com/stefan-kolb/nucleus

Distributed Systems Group
Otto-Friedrich Universität Bamberg
An der Weberei 5, 96047 Bamberg, GERMANY

Prof. Dr. rer. nat. Guido Wirtz

https://www.uni-bamberg.de/pi

Due to hardware developments, strong application needs and the overwhelming influence of
the net in almost all areas, distributed systems have become one of the most important
topics for nowadays software industry. Owing to their ever increasing importance for ev-
eryday business, distributed systems have high requirements with respect to dependability,
robustness and performance. Unfortunately, distribution adds its share to the problems of
developing complex software systems. Heterogeneity in both, hardware and software, per-
manent changes, concurrency, distribution of components and the need for interoperability
between different systems complicate matters. Moreover, new technical aspects like resource
management, load balancing and guaranteeing consistent operation in the presence of partial
failures and deadlocks put an additional burden onto the developer.

The long-term common goal of our research efforts is the development, implementation and
evaluation of methods helpful for the realization of robust and easy-to-use software for complex
systems in general while putting a focus on the problems and issues regarding distributed
systems on all levels.

Our current research activities are focused on different aspects centered around that theme:

• Reliable and inter-operable Service-oriented Architectures: Development of design meth-
ods, languages, tools and middle-ware to ease the development of SOAs with an empha-
sis on provable correct systems that allow for early design-evaluation due to rigorous
development methods. Additionally, we work on approaches and standards to provide
truly inter-operable platforms for SOAs.

• A Comparative Framework for Process Runtime Environments: Within this research
project, a comparative framework for process engines in general is developed. This
framework is applied to and validated with BPEL as well as BPMN engines. It focuses
on the comparison of standard conformance, performance, error detection as well as
automation.

• Measuring and Improving the Quality of BPMN Process Models: We elaborate on
proposals for measuring and improving the quality of human-centric process models
on different layers of abstraction. In order to improve the interoperability between
modeling tools we perform an extensive analysis of the standard document to extract
all rules and constraints for correct BPMN process models. Modeling tools and model
instances must comply with those constraints in order to be BPMN compliant and to
enable interoperability.

• Cloud Application Portability: We examine important aspects of portability in PaaS
cloud environments and enhance the portability of cloud applications by applying
common standards between heterogeneous clouds. We try to make use of a holistic
view of the cloud including important aspects like cloud specific restrictions, platform
configurations, the deployment and life cycle of cloud applications.

• Visual Programming- and Design-Languages: The goal of this long-term effort is the
utilization of visual metaphors and languages as well as visualization techniques to
make design- and programming languages more understandable and, hence, more easy-
to-use.

More information about our work, i.e., projects, papers and software, is available at our
homepage (see above). If you have any questions or suggestions regarding this report or our
work in general, don’t hesitate to contact me at guido.wirtz@uni-bamberg.de

Guido Wirtz
Bamberg, April 2016

Contents I

Contents

1 Introduction 1

2 Approach 4

2.1 Vendor Selection Criteria . 4

2.2 Selected Vendors . 7

2.3 Vendor API Evaluation . 9

2.4 Initial Layout . 11

3 Design 13

3.1 API Objects . 14

3.1.1 Region . 16

3.1.2 Service . 16

3.1.3 Application . 17

3.2 API Structure . 20

3.2.1 Authentication . 22

3.2.2 Versioning and Accept Header . 22

3.2.3 Message Formats . 23

3.3 API Operations . 24

3.3.1 Vendor, Provider, and Endpoint Operations 26

3.3.2 Service and Service Plan Operations . 27

3.3.3 Region Operations . 28

3.3.4 Application Object Operations . 28

3.3.5 Application Child Object Operations . 31

3.3.6 Application Logging Operations . 32

3.3.7 Vendor Specific Parameters . 33

3.3.8 Custom Endpoint API Calls . 33

Contents II

3.4 API Mappings . 34

3.4.1 API Object Mapping . 34

3.4.2 API Operation Mapping . 42

3.4.3 API Request Mapping . 45

3.5 API Design Challenges . 47

4 Prototype 49

4.1 Technology . 49

4.2 Project Structure . 51

4.3 Initialization . 53

4.4 API Route Setup . 54

4.5 Adapters . 57

4.5.1 Adapter Matching . 59

4.5.2 Adapter Compatibility . 60

4.5.3 Adapter Implementation . 61

4.6 Git Deployment and Repository Authentication 63

4.7 Exception Handling . 64

4.8 Authenticated API Requests . 67

4.9 Automated Tests . 68

4.9.1 Adapter Tests . 69

4.10 Documentation . 71

4.11 Usage . 72

4.11.1 System Requirements . 72

4.11.2 Configuration . 72

4.11.3 Ruby Gem . 74

4.11.4 Server . 75

Contents III

5 Evaluation 77

6 Future Work 79

7 Conclusion 80

References 81

Appendix 84

List of previous University of Bamberg reports 91

List of Figures IV

List of Figures

1 Initial layout of the proposed PaaS abstraction layer 11

2 Class diagram showing the associated Vendor, Provider and Endpoint objects 14

3 API objects class diagram . 15

4 Generic PaaS application lifecycle . 18

5 Nucleus API - Resource Map . 21

6 Application state detection rules . 39

7 Final architecture of the Nucleus project . 52

8 Nucleus’ file system project structure . 53

9 Adapter hierarchy class diagram . 58

10 Archive, Git, and file system helper classes . 58

11 Activity diagram showing the steps of authenticated API requests 67

12 Sequence diagram showing the test execution process 70

13 Swagger UI Overview, showing the grouped API objects and operations 89

14 Swagger UI showing all methods available in an operation group 89

15 Swagger UI presentation of the PATCH request to update an application . . . 89

16 Swagger UI presentation of the GET request to list all applications 90

List of Tables V

List of Tables

1 Characteristics of the evaluated PaaS providers 5

2 PaaS vendors to be supported by Nucleus . 8

3 Common PaaS API operations . 10

4 General API operation table format . 26

5 Vendor, Provider and Endpoint object: read operations 26

6 Vendor, Provider and Endpoint object: write operations 27

7 Service and service plan operations . 28

8 Region operations . 28

9 Application object CRUD operations . 29

10 Application object data operations . 30

11 Application object lifecycle operations . 30

12 Application object scale operation . 31

13 Application object operations to retrieve child object instances and collections 31

14 Application object operations to create and associate child objects 32

15 Application logging operations . 33

16 Region object attribute mapping . 35

17 Service object attribute mapping: cloudControl & Cloud Foundry 35

18 Service object attribute mapping: Heroku & OpenShift 36

19 ServicePlan object attribute mapping: cloudControl & Cloud Foundry 37

20 ServicePlan object attribute mapping: Heroku & OpenShift 37

21 Application object attribute mapping: cloudControl & Cloud Foundry 38

22 Application object attribute mapping: Heroku & OpenShift 38

23 Domain object attribute mapping . 40

24 Environment variable object attribute mapping: cloudControl & Cloud Foundry 41

25 Environment variable object attribute mapping: Heroku & OpenShift 41

26 Installed service object attribute mapping: cloudControl & Cloud Foundry . . 41

27 Installed service object attribute mapping: Heroku & OpenShift 42

List of Tables VI

28 Authentication operation mapping . 46

29 Authenticated platform requests and the essential header fields 47

30 Nucleus’ gem dependencies . 51

31 List of API operations that are supported by Nucleus per vendor 60

32 Gem dependencies for development and tests . 69

33 Operations mapping overview, from Nucleus API to vendor specific operations 87

Listings VII

Listings

1 API Authentication Header example to be used with Nucleus 22

2 API Accept Header example to be used with Nucleus 22

3 Vendor specific parameters in a CURL request example 33

4 Custom API call against the endpoint . 34

5 Custom API call against an endpoint’s application 34

6 Heroku API call vs. Nucleus custom API call against Heroku 34

7 HAL example of Nucleus’ application object using JSON 50

8 Nucleus’ config.ru Rack server startup file . 53

9 Nucleus API initialization script . 53

10 Nucleus shutdown hook . 54

11 Nucleus API root . 55

12 Nucleus API authentication protected routes . 56

13 Nucleus API application routes definition excerpt 57

14 Endpoint authentication and adapter matching code sample 59

15 OpenShift V2 adapter configuration file in YAML syntax 61

16 Adapter class and module namespace . 62

17 Heroku’s download adapter method . 63

18 Trigger rebuild method of the GitDeployer . 63

19 SSH agent creation of the SSHHandler to use a custom private key for Git . . 64

20 Nucleus error handling . 64

21 Wordfinder sample application, original IP and port configuration 71

22 Wordfinder sample application, fixed IP and port configuration 71

23 Nucleus’ default configuration file . 73

24 Include the Nucleus gem in another Ruby application 74

25 Use the Nucleus gem in another Ruby application 75

26 Nucleus’ startup script . 75

27 Rackup of the Nucleus API . 76

28 Adapter test spec template . 88

Abbreviations VIII

Abbreviations

API Application Programming Interface

CAMP Cloud Application Management for Platforms

CI Continuous Integration

CLI Command-Line Interface

CRUD Create Read Update Delete

DAO Data Access Object

DMTF Distributed Management Task Force

FQDN Fully Qualified Domain Name

HAL Hypertext Application Language

HATEOAS Hypermedia as the Engine of Application State

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

ISV Independent Software Vendor

JSON JavaScript Object Notation

OVF Open Virtualisation Format

PaaS Platform as a Service

SaaS Software as a Service

SME Small and Medium Enterprises

SSL Secure Sockets Layer

1 Introduction 1

1 Introduction

Cloud computing promises several advantages over classic IT models and has undoubtedly
been one of the most hyped topics in the industry over the last couple of years. Besides
the established delivery models Infrastructure as a Service (IaaS) and Software as a Service
(SaaS), especially Platform as a Service (PaaS) has attracted significant attention these days.
PaaS facilitates the hosting of scalable applications in the cloud by providing managed and
highly automated application environments.

In recent surveys, Independent Software Vendors (ISVs) and Small and Medium Enter-
prises (SME) revealed why they adopted or plan to adopt cloud services in the first place.
Most important, the customers highlighted that they no longer have to pay for their IT
infrastructures up front. Instead, they can consume the required resources like a utility,
pay per use and therefore cut down their investment risks. Further reasons are the expected
reduction of the total cost of ownership and the immediate access to new IT resources, which
consequently also shortens the time-to-market [KPM13; The12; PHMH09; Bad12]. Driven
by these benefits, cloud computing experienced steady growth and is anticipated to grow
even further [Pri10]. A study of Gartner recently estimated a compound annual growth rate
of 17 % between 2012 and 2017 for public cloud services [Car13], whereas KPMG forecasts
a compound annual growth rate of up to 25 % until 2016 [KPM13]. The International Data
Corporation tops even those estimations and expects the PaaS market to grow annually with
almost 30 % and reach a market volume of more than $20 billion in 2017 [Gen14].

Even though the cloud market is said to expand massively over the next years, there are
also plenty of concerns acting as market barriers and hindering further cloud adoption. ISVs
and SMEs named their biggest concerns regarding the adoption of cloud services in a series
of recent surveys. According to them, security and privacy concerns became more and more
important over the last couple of years and nearly half of the participants fear the loss of
control over their IT systems. Another major concern is the lack of standards between cloud
providers, which hinders compatibility and fosters the chances of lock-in effects, especially
vendor lock-in [The12; KPM13; Rig14]. In cloud computing, a vendor lock-in can be caused
by multiple aspects, e.g., incompatible technologies, proprietary interfaces or even missing
operations to extract application data. It bears the immediate risk of a decline in service
quality, unjustified price increases and substantial migration costs which can even threaten
the survival of ISVs and SMEs when the vendor is changed [FK06]. Migration costs must
not only be accounted when voluntarily switching the provider, but can also arise rather
unexpectedly in case of takeovers, competitors leaving the market or the bankruptcy of a
provider, making the provider change inevitable [MLBZG11]. Recent events highlight the
market being under consolidation, with acquisitions1 taking place and providers terminating
their operations2.

Nowadays, the still young PaaS market is heavily fragmented, hence, a multitude of hetero-
geneous PaaS offerings are available at the market3. According to the providers’ websites, as
well as mentioned in various studies [PCR11; CCP14; BBSR13; CH09], the vast majority of
PaaS providers offer a self-developed proprietary Application Programming Interface (API)
1 Is PaaS becoming just a feature of IaaS?. URL: https://451research.com/report-short?entityId=

79800 (Retrieved: March 22, 2016).
2 CloudBees Becomes the Enterprise Jenkins Company. URL: http://blog.cloudbees.com/2014/09/

cloudbees-becomes-enterprise-jenkins.html (Retrieved: March 22, 2016).
3 Platform as a Service Provider Comparison. URL: http://www.paasify.it (Retrieved: March 22, 2016).

https://451research.com/report-short?entityId=79800
https://451research.com/report-short?entityId=79800
http://blog.cloudbees.com/2014/09/cloudbees-becomes-enterprise-jenkins.html
http://blog.cloudbees.com/2014/09/cloudbees-becomes-enterprise-jenkins.html
http://www.paasify.it

1 Introduction 2

and tooling suite. Only a small number of providers are somewhat compatible amongst each
other, but mainly for the reason that they were built using the same product, e.g., an open
source PaaS. The compatibility between PaaS systems can be separated into two categories,
portability and interoperability. Portability which could theoretically allow seamless provider
switches [PMPC13] is hindered for many reasons. In particular, completely different tech-
nological stacks prevent an application to be moved from one provider to another [Bad12].
A provider change most likely does not only require the application to be adapted, but
also forces the developers and operators to familiarize with the new API and reimplement
the surrounding of integrated applications [EK12]. However, this reimplementation need is
caused by lacking interoperability. Semantic interoperability between cloud applications is
an essential part of hybrid and federated cloud services, but suffers from the variety of differ-
ent and incompatible APIs and tools that the providers offer [PHMRS12; ZDB+13; OF10].
Without interoperability, roll-out scripts and management applications require specific im-
plementations for each provider and changes must be made if the provider is switched.

Whereas there are several ways to prevent lock-in on the IaaS layer, e.g., by using the Open
Virtualisation Format (OVF), PaaS systems are still prone to vendor lock-in. In order to
enable a truly competitive market and unfold the full potential of PaaS, which theoretically
allows the immediate service adoption and abandonment, portability and interoperability
must be enhanced [OF10]. Standardized management interfaces, or standards in general,
are said to be an important component to realize this scenario, as they enable the consistent
management of cloud applications across several providers. They support the resolution of
portability and interoperability issues and proved themselves in many other markets [OF10;
KLZ+13; MLBZG11]. Nevertheless, no published and widely adopted PaaS standard exists
until today. A number of standards that are still in the process of making are, for instance,
OASIS’s Cloud Application Management for Platforms (CAMP) [OAS14], Cloud Portability
and Interoperability Profiles (P2301) and Standard for Intercloud Interoperability and Fed-
eration (P2302) of the Institute of Electrical and Electronics Engineers (IEEE), as well as the
results of the Distributed Management Task Force (DMTF)’s Cloud Management Working
Group. However, even though some promising standards are being developed, most com-
petitors are likely not going to adopt them on a voluntary basis. Vendors and providers
develop their custom tools and interfaces not only to distinguish themselves from their com-
petitors, but also to tie their customers. Most of their revenues are based on a mixture of
subscription-fee and pay-per-use models, which is why they have an interest in preventing
their customers to leave and join a competitor [GS12].

Beyond the use of standards, abstraction layers are another feasible approach to overcome
several of the relevant issues. By abstracting the differences of the proprietary APIs, only
one unified interface is offered to the users. Facing the current market situation, including
the mentioned chances, obstacles and approaches, our research question for this report is
defined as follows:

"Is it possible to abstract the differences of vendor-specific deployment and management in-
terfaces of PaaS systems by creating an intermediary abstraction layer?"

Concerning the mitigation of vendor lock-in effects, this report introduces an approach that
identifies and implements a generic PaaS management and deployment API as a language
independent interface. In this study, Nucleus4, a prototype of the abstraction layer, which
4 This report ist based on version 0.2 of Nucleus. Please see CHANGELOG.md for changes in newer versions.
Nucleus is available at https://github.com/stefan-kolb/nucleus

https://github.com/stefan-kolb/nucleus

1 Introduction 3

is supposed to enhance the interoperability and portability between PaaS cloud services
regarding their deployment and management tasks, is defined and evaluated.

The structure of this report is subdivided according to the major phases of the prototype’s
development. First, in Chapter 2, the basic approach is introduced to outline all required
steps for the creation of the abstraction layer. Next, Chapter 3 refines the basic approach
and defines the detailed plan to guide the implementation phase. Important aspects of the
implementation and noteworthy issues are summarized in Chapter 4. An evaluation of the
prototype is conducted in Chapter 5 to analyze whether the initial requirements could be
fulfilled. Finally, Chapter 6 states future work before Chapter 7 sums up the results of the
report.

2 Approach 4

2 Approach

Today, building and deploying PaaS applications is often a well-supported task. Due to
the provider’s Command-Line Interface (CLI) and API tooling, the configuration of a user’s
complete development environment can be tailored to integrate with the PaaS platform.
However, changing the provider becomes increasingly complicated the further the applica-
tion is integrated into the surrounding environment, for instance if continuous delivery or
deployment is used.

The goal of this report, the creation of an abstraction layer for PaaS deployment and man-
agement APIs, shall help to simplify these migration efforts. From now on, Nucleus is going
to be used as codename for the prototype. The intended abstraction should be realizable
given that the management operations of PaaS systems share the same semantics, but only
use different syntax [SR10]. Our scope is to focus on the deployment and management capa-
bilities of the providers’ APIs, while neglecting the functional interfaces, i.e., the deployment
artifacts [HLST11]. Moreover, all technical dependencies, e.g., the supported runtimes and
database systems as well as contract-specific details such as service-level agreements, are
disregarded. Handling those aspects would enhance the portability even further, but this
is already part of multiple studies [ZDB+13; PMPC13; BIS+14; GCN+13], which result in
brokering scenarios that exceed this work’s scope.

Before starting with the design of the prototype and its implementation, several aspects
have to be analyzed. In the following subsections, important foundations for building the
prototype are going to be described. Section 2.1 outlines the applied criteria to select a set
of PaaS vendors and presents the chosen vendors. Their APIs are evaluated and compared
in Section 2.3, based on identified similarities and differences. Finally, Section 2.4 reveals
the planned structure of the prototype.

2.1 Vendor Selection Criteria

Especially since a prototype is going to be created in this work, at first, only a few selected
PaaS systems can be supported. The selection depends on many criteria, e.g., the manage-
ment interfaces, deployment types, runtime languages, and the vendor’s popularity within
the community. It is intended to cover a wide variety of heterogeneity with the prototype.
For instance, the vendors shall be chosen to cover all deployment methods to theoretically
support new vendors in future releases without the need for major modifications.

In Table 1, a set of relevant candidates and their system’s characteristics are evaluated. The
information was obtained from PaaSify.it5 and by evaluating the provider’s documentation.
Providers that were not production-ready at the time of writing were excluded from the
evaluation.

5 Platform as a Service Provider Comparison. URL: http://www.paasify.it (Retrieved: March 22, 2016).

http://www.paasify.it

2 Approach 5

Provider Sy
st
em

C
L
I

C
L
I
D
ep

lo
ym

en
t

H
T
T
P

D
ep

lo
ym

en
t

G
it
D
ep

lo
ym

en
t

G
U
I
D
ep

lo
ym

en
t

Fr
ee

P
la
n

Runtimes E
xt
en

si
bl
e

A
ut
om

at
ic

Sc
al
in
g

H
or
iz
on

ta
l
Sc

al
in
g

V
er
ti
ca
l
Sc

al
in
g

Is
ol
at
io
n

App426 - 3 3 7 7 3 t Groovy, Java, Node.js, PHP, Python,
Ruby

7 7 3 3 Kontena

AWS Elastic
Beanstalk7

- 3 3 3 7 3 t .NET, Java, Node.js, PHP, Python,
Ruby

7 3 3 3 VMs

IBM Bluemix8 cf 3 3 3 h 7 t Java, Node.js, Ruby 3 7 3 3 Warden
cloudControl9 cc 3 3 7 3 3 3 Java, Node.js, PHP, Python, Ruby 3 7 3 3 LXC
Cloud Foundry10 - 3 3 3 7 7 p Go, Groovy, Java, Node.js, Ruby, Scala 3 7 3 3 Warden
dotCloud11 cc 3 3 7 3 7 3 Java, Node.js, Perl, PHP, Python,

Ruby
3 7 3 3 LXC

Exoscale12 cc 3 3 7 3 7 7 Clojure, Java, Node.js, PHP, Python,
Ruby, Scala

3 7 3 3 LXC

Heroku13 - 3 7 3 3 7 3 Clojure, Groovy, Java, Node.js, PHP,
Python, Ruby, Scala

3 7 3 3 LXC

HP Helion14 cf 3 3 3 7 7 t Go, Groovy, Java, Node.js, Ruby, Scala 3 3 3 3 Warden
Jelastic15 - 7 7 3 3 3 t Java, Node.js, PHP, Python, Ruby 3 3 3 3 ?
Microsoft
Azure16

- 3 3 3 3 7 t .NET, Java, Node.js, PHP, Python,
Ruby

3 3 3 3 Hypervisor

Nodejitsu17 - 3 3 3 h 7 7 Node.js 7 7 3 3 SmartOS Zone
OpenShift V218 - 3 7 7 3 7 3 Java, Node.js, Perl, PHP, Python,

Ruby
3 3 3 3 Warden

Stackato19 cf 3 3 3 7 7 p Clojure, Go, Groovy, Java, Node.js,
Perl, PHP, Python, Ruby, Scala

3 3 3 3 Docker

LEGEND
Core System cc : cloudControl cf : Cloud Foundry
Git Deployment h : Via Git hooks
Free Plan t : Trial period p : Private hosting

Table 1: Characteristics of the evaluated PaaS providers

In the remainder of this section, the most important criteria that were used to select the
supported vendors are going to be introduced, before Section 2.2 finally presents the chosen
vendors.

Management Interface Criteria

An evaluation of the documentation of the listed PaaS providers revealed three types of
distinguishable management interfaces. Most providers offer a web interface that allows to
adjust numerous settings of the platform. The web interface is usually supported by a web
6 App42 PaaS. URL: http://app42paas.shephertz.com (Retrieved: March 22, 2016).
7 AWS Elastic Beanstalk. URL: http://aws.amazon.com/elasticbeanstalk (Retrieved: March 23, 2016).
8 IBM Bluemix. URL: http://www.ibm.com/cloud-computing/bluemix/ (Retrieved: March 23, 2016).
9 cloudControl. URL: https://www.cloudcontrol.com (Retrieved: January 20, 2016).
10CloudFoundry. URL: http://cloudfoundry.org (Retrieved: March 23, 2016).
11dotcloud. URL: https://www.dotcloud.com (Retrieved: October 31, 2015).
12Exoscale. URL: https://www.exoscale.ch (Retrieved: October 31, 2015).
13Heroku. URL: https://www.heroku.com/ (Retrieved: March 23, 2016).
14HP Helion Development Platform. URL: http://www8.hp.com/us/en/cloud/helion-devplatform-

overview.html (Retrieved: May 6, 2015).
15Jelastic. URL: http://jelastic.com (Retrieved: October 29, 2014).
16Microsoft Azure. URL: http://azure.microsoft.com/en-us/overview/what-is-azure/ (Retrieved:
October 31, 2014).

17Nodejitsu. URL: https://www.nodejitsu.com/ (Retrieved: October 31, 2014).
18OpenShift. URL: https://www.openshift.com (Retrieved: October 29, 2014).
19Stackato 3.4. URL: https://www.activestate.com/stackato (Retrieved: October 31, 2014).

http://app42paas.shephertz.com
http://aws.amazon.com/elasticbeanstalk
http://www.ibm.com/cloud-computing/bluemix/
https://www.cloudcontrol.com
http://cloudfoundry.org
https://www.dotcloud.com
https://www.exoscale.ch
https://www.heroku.com/
http://www8.hp.com/us/en/cloud/helion-devplatform-overview.html
http://www8.hp.com/us/en/cloud/helion-devplatform-overview.html
http://jelastic.com
http://azure.microsoft.com/en-us/overview/what-is-azure/
https://www.nodejitsu.com/
https://www.openshift.com
https://www.activestate.com/stackato

2 Approach 6

based API and operating system specific command-line tools. Some vendors even provide
Integrated Development Environment (IDE) plugins or language wrappers to manage their
PaaS environment. In contrast to web interfaces, APIs and CLIs are far easier to automate.
Moreover, most of the times, CLIs, language wrappers and IDE plugins all use the platform’s
API themselves. Consequently, all other interfaces are neglected if possible and the focus is
set on using the platform’s API in this prototype.

Deployment Type Criteria

One of the main challenges when creating Nucleus is likely to be the deployment task. As
outlined in Table 1, three distinct deployment methods could be identified: Command-line
tools, deployment via Git20 and the use of HTTP commands against the platform’s API.
All additional possibilities, e.g., deployment via Ant21, Maven22 or Gradle23 tasks as well as
IDE plugins, utilize one of the three basic approaches.

Command Line Interface

Most of the providers offer some kind of CLI to their users. During the deployment, these
command-line tools upload the contents of a specific local directory or even binary files,
usually application containers, into the cloud and deploy them directly onto the provider’s
servers. Some of the CLIs thereby mainly use the methods provided by the platform’s API,
others also invoke locally installed version control systems, for instance Git.

Offering support for providers that utilize CLI deployment might cause dependencies onto
the command-line tools that are offered by the provider and hence also lead to operating
system specific restrictions. Nevertheless, the invocation of these tools could be realized
in plenty of programming languages, for instance Java24 or Ruby25. Besides the providers
that offer deployment via their CLI tools listed in the table, also AppFog V126 and Google
AppEngine27 use this method.

Git

The second identified deployment method relies on the use of Git repositories and locally
installed Git binaries. An execution of the git push command uploads the files to the remote
repository and triggers deployment hooks that launch the build process. This deployment
method introduces a direct dependency onto a local Git installation, but there are plenty of
approaches available to invoke these commands from within an application, for instance if
20Git. URL: http://git-scm.com/ (Retrieved: October 29, 2014).
21Apache Ant. URL: http://ant.apache.org (Retrieved: October 29, 2014).
22Apache Maven. URL: http://maven.apache.org (Retrieved: October 29, 2014).
23Gradle. URL: http://www.gradle.org (Retrieved: October 29, 2014).
24Executing operating system commands from java. URL: https://blog.art-of-coding.eu/executing-

operating-system-commands-from-java (Retrieved: May 6, 2015).
25Calling shell commands from Ruby. URL: http://stackoverflow.com/a/2400/1009436 (Retrieved:
May 6, 2015).

26AppFog. URL: http://appfog.com (Retrieved: October 31, 2014).
27Google AppEngine. URL: https://appengine.google.com (Retrieved: October 29, 2014).

http://git-scm.com/
http://ant.apache.org
http://maven.apache.org
http://www.gradle.org
https://blog.art-of-coding.eu/executing-operating-system-commands-from-java
https://blog.art-of-coding.eu/executing-operating-system-commands-from-java
http://stackoverflow.com/a/2400/1009436
http://appfog.com
https://appengine.google.com

2 Approach 7

using Ruby28 or Java29. Some other platforms that allow the usage of Git commits as upload
mechanism are Amazon’s Elastic Beanstalk30 and Google AppEngine.

HTTP

Even though all platforms offer HTTP management APIs, nearly none of them actively
supports the application data upload and deployment via this API. HTTP deployment is
favored to be used in the abstraction layer as the deployment via HTTP commands is
the most independent approach that neither requires version control dependencies nor any
command-line tools to be installed.

HTTP-based deployment is used by Cloud Foundry and Heroku, which partially supports
the deploy operation via the RESTful API in addition to a deployment via Git. The files to
be deployed via Heroku’s API must already be packaged into a so called slug31.

Runtime Criteria

The set of supported runtimes is one of the main criteria for customers when choosing
which PaaS to use. Table 1 not only lists the supported runtimes of each provider, but
also highlights whether a PaaS is extensible to support additional runtimes. The most
popular approaches to allow additional runtimes are Heroku’s buildpacks32 and OpenShift’s
cartridges33. Both approaches have already been adopted by other vendors.

An evaluation of the natively supported runtime languages34 lists Java, PHP, Ruby, Node.js,
and Python as best supported languages, with all of them being offered by more than 50 %
of the providers. Based on this criteria, it was decided that the vendors that should be used
in the prototype must support one common language, either natively or by extension, to
enable a comparable application deployment during the development of Nucleus.

2.2 Selected Vendors

Evaluating the presented facts, the following four vendors were chosen to be included in the
Nucleus prototype: cloudControl, Cloud Foundry, Heroku, and OpenShift.

More details about the vendors have been collected in Table 2. The column complete reveals
if all API methods are fully documented. The documentation of a vendor’s API is up-to-
date if it also includes the latest development state. A subjective rating column indicates the
28Ruby Git lib: ruby-git. URL: https://github.com/schacon/ruby-git (Retrieved: May 6, 2015).
29Java Git lib: jgit. URL: http://eclipse.org/jgit (Retrieved: May 6, 2015).
30AWS Elastic Beanstalk. URL: http://aws.amazon.com/elasticbeanstalk (Retrieved: March 23, 2016).
31Creating Slugs from Scratch. URL: https : / / devcenter . heroku . com / articles / platform - api -

deploying-slugs (Retrieved: March 23, 2016).
32Heroku Buildpacks. URL: https://devcenter.heroku.com/articles/buildpacks (Retrieved: March 22,
2016).

33OpenShift Origin Cartridge Developer’s Guide. URL: https://docs.openshift.org/origin-m4/oo_
cartridge_developers_guide.html (Retrieved: March 22, 2016).

34PaaS Profiles - Runtime Language Statistics. URL: http://www.paasify.it/statistics/languages
(Retrieved: May 6, 2015).

https://github.com/schacon/ruby-git
http://eclipse.org/jgit
http://aws.amazon.com/elasticbeanstalk
https://devcenter.heroku.com/articles/platform-api-deploying-slugs
https://devcenter.heroku.com/articles/platform-api-deploying-slugs
https://devcenter.heroku.com/articles/buildpacks
https://docs.openshift.org/origin-m4/oo_cartridge_developers_guide.html
https://docs.openshift.org/origin-m4/oo_cartridge_developers_guide.html
http://www.paasify.it/statistics/languages

2 Approach 8

overall impression of the API and its documentation. In the following, the chosen vendors,
their platform, and the most important aspects to be regarded during the implementation
phase are introduced.

API Authentication API Documentation

Provider Method Obtain Token Rating Complete Up-to-date Examples
cloudControl Token 3 – – 7 7 7

Cloud Foundry V2 OAuth 2 3 + 3 3 3

Heroku OAuth 2 3 + + 3 3 3

OpenShift V2 HTTP Basic 7 + 3 7 3

Table 2: PaaS vendors to be supported by Nucleus

cloudControl

cloudControl35 is the product of a German based start-up that also distributes its PaaS as
white-label product. It was not only chosen as contrast to the big players, but also because
of its usage of Heroku’s buildpacks. Some other companies, namely Exoscale, Cloud&Heat
as well as dotCloud, internally run the same PaaS. The downside of using cloudControl is
likely to be the rather poor documentation of the API, being neither complete, nor up-to-
date. Examples are not available, but the important options can be extracted from one of
their language specific API wrappers. The API authentication uses a custom token based
system.

Cloud Foundry

Cloud Foundry was chosen for a variety of reasons. First, the open source platform serves as
foundation for many other PaaS providers, for instance AppFog, HP Helion, IBM Bluemix,
Pivotal WS, Stackato, and many more. Second, Cloud Foundry provides a very complex, but
also very well documented API. Nevertheless, it takes some time to distinguish between the
operations of API version 2 and 3 in the API documentation. Third, the simple installation
within a local virtual machine allows the project setup without inflicting costs and network
delays. Cloud Foundry is the only selected platform that does not support the deployment
via Git, instead HTTP commands must be used to upload the data. For authentication
against the API, solely OAuth 236 can be used. In our prototype, only the operations of API
version 2 shall be applied, as version 3 is still marked as experimental.

Heroku

Heroku is one of the most popular platforms for ISVs and is often mentioned for its well
designed API. The API documentation is complete, up-to-date and provides extensive ex-
amples. Authentication can be achieved using OAuth 2. Besides these points, Heroku was
chosen as it is the source of the buildpack technology, offers multiple deployment regions and
matches all of the defined criteria.
35 cloudControl was shutdown due to bankruptcy end of February 2016. See https://twitter.com/

cloudcontrolled/status/699530071481196544
36OAuth 2.0. URL: http://oauth.net/2/ (Retrieved: May 7, 2015).

https://twitter.com/cloudcontrolled/status/699530071481196544
https://twitter.com/cloudcontrolled/status/699530071481196544
http://oauth.net/2/

2 Approach 9

OpenShift

Apart from Cloud Foundry, OpenShift is another popular open source PaaS. In Nucleus,
OpenShift V2 shall be used, but V3 is expected to be released anytime soon. Most notably,
OpenShift provides its own extensibility mechanism, can be installed locally, and supports
automatic scaling. It also allows the application deployment to one of several deployment
regions around the globe. Opposed to the other vendors, OpenShift does not use token based
authentication, but requires the credentials to be submitted via HTTP Basic-Authentication.
The documentation is rather complete and provides good examples, but was not updated
for quite some time. Hence, the self-describing API lists several new operations that are not
included in the documentation.

2.3 Vendor API Evaluation

Having agreed on the four vendors, it must also be decided which of the available deploy-
ment and management operations shall be supported in the prototype. Management features
include the application lifecycle operations to create, delete, deploy, start, and stop appli-
cations. Furthermore, they usually also offer application scaling, log management, access to
environment variables, and many more [KW14].

Most vendors provide their own, nonstandardized API. Consequently, there are substantial
differences in terms of the supported operations and also some distinctions in the overall
functionality offered to the users. cloudControl, for instance, is the only of the four vendors
that supports separated deployment environments. For the reason of this API diversity, all
operations that the abstraction layer shall support have to be specified, including descriptions
of their purpose and if these conditions can even be realized by the platform.

Some earlier publications [DBCAZ12; SYMT13; CNS14] already defined requirements and
operations that are shared between PaaS providers and should be supported by homogenized
PaaS APIs. All of them defined application lifecycle operations for starting and stopping
application instances as well as Create Read Update Delete (CRUD) methods for the ap-
plication environment. Cunha et al. [CNS14] also included functionalities to add services,
scale the application, and access the application’s log files. Sellami et al. [SYMT13] fo-
cused especially on application environments and D’Andria et al. [DBCAZ12] specialized
on the migration of applications between platforms. In addition to these operations, the
application’s domain and environment variable objects are further essential parts of PaaS
offerings that are not yet covered. We also find it reasonable to provide additional methods
for application scaling, log file access, and service management.

Following a detailed evaluation of cloudControl’s37, Cloud Foundry’s38, Heroku’s39 and Open-
Shift’s40 API documentations, Table 3 was created to list all common API resource objects
and their operations.

37 cloudControl API doc. URL: https://api.cloudcontrol.com/doc/ (Retrieved: May 7, 2015).
38Cloud Foundry API doc, v206. URL: http://apidocs.cloudfoundry.org/ (Retrieved: May 7, 2015).
39Heroku Platform API Reference, state of April, 20th 2015. URL: https://devcenter.heroku.com/

articles/platform-api-reference (Retrieved: May 7, 2015).
40OpenShift Online REST API Guide, Ed. 1.0. URL: https://access.redhat.com/documentation/en-

US/OpenShift/2.0/html/REST_API_Guide/index.html (Retrieved: May 7, 2015).

https://api.cloudcontrol.com/doc/
http://apidocs.cloudfoundry.org/
https://devcenter.heroku.com/articles/platform-api-reference
https://devcenter.heroku.com/articles/platform-api-reference
https://access.redhat.com/documentation/en-US/OpenShift/2.0/html/REST_API_Guide/index.html
https://access.redhat.com/documentation/en-US/OpenShift/2.0/html/REST_API_Guide/index.html

2 Approach 10

Be
lo
ng
s t
o

G
ro
up

Functionality Description Cl
ou
d
Fo
un
dr
y
v2

H
er
ok
u

clo
ud
Co
nt
ro
l

O
pe
nS
hi
ft
v2

GET Get an application entity 3 3 3 3
DELETE Delete the application 3 3 3 3

A
p
p

UPDATE Update the application 3 3 7 7
REBUILD Rebuild, e.g., to use updated buildpacks 3 3 3 3
UPLOAD Upload the actual application data 3 3 3 3
DOWNLOAD Download the current application data 3 3 3 3
START Start the application 3 3 7 3
STOP Stop the application 3 3 7 3L

if
ec
y
cl
e

RESTART Restart the application 3 3 7 3
AUTOSCALE Enable / disable auto-scaling 7 7 7 3
ADD INSTANCE Add new instance, scale horizontally 3 3 3 3
REMOVE INSTANCE Remove instance, scale horizontally 3 3 3 3

S
ca
li
n
g

SCALE Set instance power level, e.g. RAM 3 3 3 7
CHECK NAME Is the domain name available 7 7 7 7
LIST DOMAINS List all application domains 3 3 3 3
GET Get domain entity 3 3 3 3
ADD DOMAIN Assign domain to the application 3 3 3 3
DELETE Delete and remove the domain 3 3 3 3
UPDATE Update the domain settings 3 3 3 3
SET CERTIFICATE Apply the domain’s SSL certificate 7 7 7 3

D
o
m
ai
n
s

REMOVE CERTIFICATE Remove the SSL certificate 7 7 7 3
LIST VARS List all environment variables of the app 3 3 3 3
CREATE VAR Create a variable with initial value 3 3 3 3
UPDATE VAR Update an existing variable’s value 3 3 3 3
DELETE VAR Remove a variable 3 3 3 3

V
ar
ia
b
le
s

GET VAR Get an environment variable entity 3 3 3 3
LIST LOGS Collect the application’s log files 3 3 3 3
GET SPECIFIC LOG Get a specific log file 3 3 3 3
DOWNLOAD LOGS Download all logs as an archive 3 3 3 3

L
o
g
g
in
g

GET STATISTICS Get some application statistics 3 3 7 7
ADD SERVICE Install and bind to the application 3 3 3 3
UPDATE SERVICE Update bound service settings 3 3 3 3
REMOVE SERVICE Remove bound service 3 3 3 3
GET Get bound service entity 3 3 3 3

A
p
p
li
ca
ti
o
n
o
p
er
a-

ti
o
n
s

S
er
v
ic
es

LIST List all installed services 3 3 3 3

CHECK NAME Is the application name available for use 7 7 7 3
CREATE Create the application 3 3 3 3

A
p
p

LIST List all applications 3 3 3 3
GET Get available service entity 3 3 3 3
LIST List all available services 3 3 3 3
GET PLAN Get service plan entity 3 3 3 3G

en
er
al

S
er
v
ic
e

LIST PLANS List all available plans for a services 3 3 3 3

LEGEND
Values 3 : Functionality supported 7 : Unsupported

Table 3: Common PaaS API operations

General operations do not relate to a specific application instance and can be divided into two
subgroups, being either related to the platform’s application or service object. Services and
their associated plans should be enumerable and retrievable, whereas the general operations
for the application object include the creation and enumeration of application environments.

Operations that belong to a specific application entity make up the largest part of the
proposed PaaS abstraction layer. CRUD operations are included for application, service,
environment variable and domain objects. The operations of the domain group also include
methods to modify domain bound Secure Sockets Layer (SSL) certificates, which are cur-
rently only supported by OpenShift’s API. Besides horizontal and vertical scaling, automatic
scaling of applications is also only supported by OpenShift. The logging functionality in-

2 Approach 11

cludes methods for enumerating and retrieving log files as well as the ability to download
log files and the retrieval of application statistics. Statistics are currently not supported by
cloudControl and OpenShift.

In contrast to the referenced publications [DBCAZ12; SYMT13; CNS14], environments,
monitoring, and database actions were intentionally left out. Database actions are rather
specific and more of a technical requirement based on the utilized data back end. More ad-
vanced monitoring is out of scope as it is not planned to evaluate the platforms’ performance.
Application environments are neglected as they are not widely supported at the moment.
It is not planned to add artificial features for platforms, but to homogenize the currently
offered capabilities.

Semantic conflicts between the different vendor interfaces [LKT11] are challenges for the
abstraction layer that can be identified with the help of the compatibility results of Table 3.
One semantic conflict is the special application lifecycle of cloudControl, where applications
cannot be stopped or put into maintenance mode. A further semantic conflict lies in the
handling of the application object. Cloud Foundry and Heroku allow to update the appli-
cation settings after its creation, but cloudControl and OpenShift do not offer this option.
Another constraint is that it cannot be verified if a unique name constraint is violated, e.g.,
for application and domain names, except for application names on OpenShift.

2.4 Initial Layout

The initial layout of the architecture for Nucleus is outlined in Figure 1. To all potential
users, Nucleus shall appear as one language independent API, abstracting all logic hidden
underneath.

App #nApp #1

API

Nucleus API

Application(s)

API Git

Application(s)

API Git

Application(s)

API Git

Authentication

Adapter matching

Heroku Openshift V2 Cloud Foundry V2 cloudControl

Adapter fundamentals

Figure 1: Initial layout of the proposed PaaS abstraction layer

Internally, it is planned to divide Nucleus into three more layers. A top-level authentication
layer shall verify the presence and validity of the user’s credentials. The results of the

2 Approach 12

provider evaluation revealed that it is best to request only a combination of username and
password. Further authentication modes, for instance token based authentication, should
be supported with these credentials as well. Below the authentication layer, it is intended
to provide a set of fundamental functionalities that can be reused by all adapter modules.
Shared operations are, e.g., archive file handling or Git repository actions. Each adapter
is the implementation of the yet to be specified API of the abstraction layer for a specific
PaaS system. The maintainability and extensibility of the prototype shall be fostered by
the use of individual adapters per vendor. Below the fundamentals layer, the matching
layer guarantees to automatically resolve a valid adapter for the user’s PaaS. Finally, the
adapters layer makes sure that the behavior of each system is equal. Adapters translate the
generic operations of the Nucleus API into a sequence of native operations of the proprietary
platform APIs.

3 Design 13

3 Design

In this chapter, the detailed design of Nucleus is defined. The basic approach, which was
outlined in Section 2, gets further refined so that an implementation-ready API specification
is available by the end of this chapter.

One of the most important requirements for the API is to provide a programming language
independent abstraction layer. In alignment with all the chosen vendors, we decided to
create a RESTful API with the use of Hypertext Transfer Protocol (HTTP).

Besides the abstraction part of the API which was already introduced in the previous chapter,
the need to create a public API part that provides access to the various PaaS systems
emerged. In this context, from now on vendors and their platform are defined as follows:

Vendor A vendor develops and offers his PaaS, which determines the offered
features to the most extend. For each supported vendor there must be
an adapter that matches its unique requirements. The vendor is usually
referred to by naming its platform. As an example, RedHat develops and
offers the platform OpenShift.

Provider A provider uses a platform and offers it to customers, but must not
necessarily have developed the platform. In this context, IBM Bluemix is
an example for a provider.

Endpoint An endpoint is the API access point defined by the provider. One
provider can offer multiple endpoints.

Although this distinction appears overspecified at first, it is needed to comply with all vendors
and the providers in an accurate manner. Whereas most providers offer exactly one API
endpoint and would not require this distinction, some providers offer multiple endpoints.
As an illustration, one can take the provider IBM Bluemix which is based on the Cloud
Foundry PaaS. IBM Bluemix offers two API endpoints to its customers, one referring to the
Cloud Foundry service running in the United States, the other one pointing at the European
counterpart. With this approach, IBM accounts for the lacking multi-region support of
Cloud Foundry.

This public part of the API needs to present the vendors, providers and endpoints to the user
in a way that he can analyze the available entities and navigate through the API. We decided
that the entity data presented to the user shall originate from a data store. Initial data shall
be loaded from adapter configuration files and populate the empty database during the
startup phase. Compared to an approach that only presents static adapter configurations,
this technique allows to add, update or remove providers and endpoints at runtime. This
feature is especially useful when offering the abstraction layer as a hosted service or if private
clouds, for instance a local Cloud Foundry deployment are used.

Figure 2 illustrates the associations between vendors, providers and endpoints in detail.
For each vendor there can be an arbitrary number of providers using the platform and a
provider itself can also offer any number of endpoints. Both, endpoint and provider are
strictly associated with a parent provider or vendor, respectively. All three objects inherit
from a common AbstractModel to share attributes, for instance a name, unique ID, and
timestamps. The Endpoint object includes additional attributes, e.g., the URL at which

3 Design 14

the API can be accessed. By using the AdapterIndexEntry class which associates the ID of
an endpoint to a concrete adapter class, the need to traverse the complete chain upon API
requests only to resolve the applicable adapter can be avoided. More detailed information
on the design of this public API part can be found in sections 3.2 and 3.3.1.

Vendor Provider
0..*1

+ id: String
+ url: URL
+ adapter_clazz: BaseAdapter

AdapterIndexEntry

+ id: String
+ name: String
+ created_at: String
+ updated_at: String

AbstractModel

0..*1

+ app_domain: URL
+ trust: Boolean
+ url: URL

Endpoint

Figure 2: Class diagram showing the associated Vendor, Provider and Endpoint objects

In the remainder of this chapter, each of the following sections focuses on important subparts
of the API. Section 3.1 introduces all API objects and the common application lifecycle
model. In Section 3.2 the previous definitions are summarized to illustrate the big picture
of the API. Thereafter, Section 3.3 describes all API operations with their pre- and post-
conditions. Finally, the actual API abstractions are presented in Section 3.4. The first part
of the abstractions is shown in Section 3.4.1 which describes the mapping of the vendor’s
API objects to Nucleus’ objects. Thereafter, Section 3.4.2 presents which operations need to
be called on the platforms to create the desired behavior, completing the API’s definitions
and the design chapter.

3.1 API Objects

Based on the identified operations of Section 2.3, this section introduces all API objects that
are needed to build the foundation of the prototype. All identified objects, including their
associations and relationships, are visualized in the class diagram that is shown in Figure 3.
The included PersistedEntity and its inheriting classes follow the previous definitions to
build the public API part and manage Vendor, Provider, and Endpoint objects.

3 Design 15

+ name: String
+ state: String
+ release_version: String
+ web_url: URL
+ instances: Integer
+ autoscaled: Boolean
+ region: String
+ runtimes: Array(String)
+ active_runtime: String
+ _links: ApplicationReferences

Application

+ services: Array(Application)

ApplicationList

+ name: String

Domain

+ services: Array(Domain)

DomainList

+ key: String
+ value: String

EnvironmentVariable

+ services: Array(EnvironmentVariable)

EnvironmentVariableList

+ services: Array(Log)

LogList

+ services: Array(Service)

ServiceList

+ active_plan: String
+ web_url: URL
+ properties: Array(InstalledServiceProperty)

InstalledService

+ services: Array(InstalledService)

InstalledServiceList

+ size: Integer
+ _links: BasicReferences

GenericList

0..*1

0..*1

0..*1

0..*1

0..*1

0..*1

+ id: String
+ created_at: String
+ updated_at: String
+ _links: BasicReferences

AbstractModel

+ self: Link
+ parent: Link

BasicReferences

+ href: URL

Link

+ domains: Link
+ logs: Link
+ services: Link
+ vars: Link

ApplicationReferences

0..*

1

0..*

1

0..*

1

0..*

1

0..*

1

Vendor Provider
0..*1

+ name: String
+ _links: VPEReferences

PersistedEntity

0..*1

+ app_domain: URL
+ trust: Boolean
+ url: URL

Endpoint

+ docs: Link
+ providers: Link
+ endpoints: Link
+ applications: Link

ApiReferences

+ name: String
+ description: String
+ release: String
+ free_plan: Boolean
+ documentation_url: URL
+ required_services: Array(String)
+ _links: ServiceReferences

AbstractService

+ plans: Link

ServiceReferences

+ name: String
+ free: Boolean
+ description: String
+ costs: Array(ServiceCosts)

ServicePlan

+ service_plans: Array(ServicePlan)

ServicePlanList 0..*1
0..*1

+ period: String
+ per_instance: Boolean
+ price: Array(ServiceCostsPrice)

ServiceCosts

+ currency: String
+ amount: Float

ServiceCostsPrice0..*1

+ key: String
+ value: String
+ description: String

InstalledServiceProperty0..*1

0..*

1

+ name: String
+ type: String

Log

+ regions: Array(Region)

RegionList

+ description: String

Region0..*1

Service

Figure 3: API objects class diagram

Following various best practices that describe how to properly build an API41,42,43,44, the
abstraction layer’s API utilizes several common concepts. If applicable, all of the API’s
response objects shall have a unique ID and timestamps that reveal when the object was
created and when it was updated for the last time. Combined with the _links property
that shall be utilized to match the ideas behind the Hypermedia as the Engine of Applica-
tion State (HATEOAS) principle of RESTful applications, those requirements lead to the
41Best Practices for Designing a Pragmatic RESTful API. URL: http://www.vinaysahni.com/best-

practices-for-a-pragmatic-restful-api (Retrieved: June 3, 2015).
42HTTP API design guide extracted from work on the Heroku Platform API. URL: https://github.com/

interagent/http-api-design (Retrieved: November 26, 2014).
43HTTP API Design. URL: https://github.com/interagent/http-api-design (Retrieved: June 25,
2015).

44RESTful Service Best Practices - Recommendations for Creating Web Services. URL: https://github.
com/tfredrich/RestApiTutorial.com/raw/master/media/RESTful%20Best%20Practices-v1_2.pdf
(Retrieved: June 25, 2015).

http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api
http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api
https://github.com/interagent/http-api-design
https://github.com/interagent/http-api-design
https://github.com/interagent/http-api-design
https://github.com/tfredrich/RestApiTutorial.com/raw/master/media/RESTful%20Best%20Practices-v1_2.pdf
https://github.com/tfredrich/RestApiTutorial.com/raw/master/media/RESTful%20Best%20Practices-v1_2.pdf

3 Design 16

AbstractModel class which possesses all those four properties and must be inherited by all
other API response objects. References are required to be of the type BasicReferences or
one of its inheriting classes. The class BasicReference has two links, one self and one
parent link. Its self-reference is a URL that tells where this specific object can be retrieved
from. The parental reference reveals to which other object the object is assigned. Both
links must always be set, except for the API’s root node, which does not have a parental
reference. All subtypes of the BasicReference provide additional relations, e.g., in case of
the class ApplicationReferences to all child object collections of an application. Further
API concepts that are not directly related to the API’s objects are presented in 3.2 and its
subsections.

In addition to the Application object as core component of all evaluated APIs, Figure 3
also includes the Region, Service, ServicePlan, Domain, EnvironmentVariable, Log and
InstalledService classes. All these objects are going to be introduced in the following
subsections. Beside those, the diagram also contains dedicated List objects for all of the
previously mentioned classes. Their purpose is to normalize the way how the API responds
with object collections. Therefore, all List objects inherit from GenericList including
its size property to indicate the number of available elements and the _links property for
HATEOAS. Additional features, for instance pagination within the API, can easily be added
to the generic class later on.

3.1.1 Region

Regions refer to a specific geographic deployment location that are offered by some providers.
A provider decides which regions are offered to its customers. The initial region object
is defined solely by a description attribute, apart from the basic ID and timestamps.
Restrictions apply on some platforms, e.g., OpenShift has a dedicated location for Node.js
deployments, but is missing formalizations that could be included in the object. Therefore,
it was decided to use the description attribute for those comments and leave the validity
assertions to the platform itself for now.

3.1.2 Service

Services are additions to the actual program, often dependencies, that can be installed
and bound to an application. Popular examples for services are data stores, monitoring
tools, logging utilities, notification services, and many more. The specification of the offered
services varies between all platforms. Each Service object describes a service that can
be installed and bound to an application. Despite the feature of some platforms to install
global services that can be used with multiple applications, Nucleus’ initial service object
is explicitly restricted to services which are part of exactly one application. Services that
are already bound to an application are described later on in Section 3.1.3 with a dedicated
object.

Attributes of a service, which are shared amongst all evaluated platforms, are defined inside
the AbstractService class, from which the Service class inherits. A service features com-
mon properties, e.g., the name and description, but also service specific properties like the
release. The release property holds information about the software version of the service.
A service’s documentation_url refers to a web page containing more information about the

3 Design 17

service and how it can be used. If a service can be used without any charges, the free_plan
property must be set to true. In case a service requires additional services before it can
be installed, the IDs of those required services shall be shown in the required_services
property.

In order to install and bind a service to an application, most platforms support the concept
of service plans.

Service Plans

Service plans always belong to exactly one service. They describe the conditions under
which the service can be used and the price that will be charged. The class diagram in
Figure 3 shows the extensive model with the ServiceCosts and ServiceCostsPrice classes
that are needed to achieve compatibility with all four platforms. In all response messages,
the ServiceCosts and ServiceCostsPrice objects shall be embedded in the ServicePlan
object. They should not be retrievable directly via the API. ServiceCosts represent costs
which may be charged for the service installation or usage. The period property is used due
to the fact that costs can either be fixed, e.g., to be paid on a monthly basis, or dependent
on the number of times the service is used. Fixed periods that were encountered during
the evaluation are hourly and monthly. Some services also charge a cost per application
instance, which is denoted by the Boolean per_instance property. The ServiceCostsPrice
class belongs to exactly one cost object and describes the amount of money to be charged
in the defined currency. Platforms can specify the charges in more than one currency. A
ServiceCosts object must have at least one price. Costs are usually charged in the user’s
currency.

3.1.3 Application

The Application object can be seen as the core object for most parts of the abstraction layer.
It has four direct child object types which can be associated with an application, namely
Domains, EnvironmentVariables, Logs and InstalledServices. Standard properties are
an application’s name, the references as well as the ID and timestamps. Each application can
be instantiated with one or more runtimes, whereby limitations of the used platform apply.
The runtime that is currently used by the application shall be visible in the active_runtime
property. If an application has been deployed, the release_version property indicates the
version of these binary files. Within the web_url property, one can find the URL at which
the application should be accessible by default. The geographic location of the servers at
which the application is or shall be deployed is denoted by the application’s region. If the
autoscaled property is set to true and the platform supports autoscaling, the number of
application instances will be automatically adjusted to the current or expected load. The
instances property shows the number of application instances that are created for the
application.

All of the application’s child objects as well as the lifecycle of a deployed application are
presented in the following paragraphs.

3 Design 18

Application Lifecycle

An application usually undergoes several stages which is manifested in the state property of
the application object. Managing an application and its states requires a detailed knowledge
of the state transitions and the overall lifecycle of the application. Each of the four platforms
is based on a slightly different understanding of the application object. Nonetheless, we
managed to identify a generic PaaS application lifecycle that complies with all four platforms.
The lifecycle, which is illustrated in Figure 4, differentiates between a total of six states.
Platforms are allowed to use only a subset of these six states, especially as not every platform
supports all six states.

Application InstanceApplication InstanceApplication Instance

sm PaaS application

CREATED

create

DEPLOYED

delete

upload

Application Instance

RUNNING

STOPPED

SUSPENDED

start

resume

stop

stop

suspend

delete

delete

start

[failed]

[ok]

Upload an
archive containing
the application data

restart

rebuild

CRASHED

build

Global state is:
- running if at east one instance is running
- suspended if all instances are suspended
- crashed if all instances are crashed
- stopped if no instance is running

update

1 to n instances

scale[on error]

[on error]

Figure 4: Generic PaaS application lifecycle

Initially, an application must be created, upon which its state shall be created. In order to
transition into the deployed state, the applications data must be uploaded to the platform.
Even though it can be argued that the deployed state is not required and applications
could directly switch into the running state, this state was retained. It provides additional
flexibility, for instance persisted data can be imported or background jobs can be started
before the actual application is made available to the public. From the deployed state,
the instances of the application can be started. The application’s build process can be
executed at two positions inside the lifecycle. Cloud Foundry and cloudControl both expect
an explicit build command to be called. In the abstraction layer this build is triggered before
the start of the first application instance. A failed build would then cause a state transition
of the application instance into the crashed state. In contrast, Heroku and OpenShift

3 Design 19

start the build process within the Git deployment process. Failed builds do not cause the
application instance to transition into the crashed state, but rather reject the data upload
and retain the application’s previous global state. If at least one instance of the application
was successfully started, its state changes from deployed to running. After a period of
inactivity, cloudControl, Heroku and OpenShift can put an application to sleep, changing
the application instance’s state from running to suspended. If the application instance is
resumed, e.g., when new requests arrive, the state changes back to running. With the stop
command an application can be shutdown, whereupon the new state of the application and
all instances is stopped. The start command on a stopped application usually results in
the state to become running, but in case of errors the application instance state can also
switch to crashed. Apart from changes of the application’s runtimes, application object
modifications, triggered rebuilds and scaling do not have a direct effect on the application’s
state. The global state of the application can be deducted by the individual application
instance states. The application is said to be running if at least one instance is running.
Stopped, crashed or suspended states only apply if all instances are in this state.

Domains

Domains are always bound to an application and cannot exist without a parent application.
In addition to an application’s default web_url, platforms offer to register additional domains
at which an application can be made available. For the realization of the abstraction layer
it is sufficient that the domain object has only one distinct property, the name, which must
be set to the desired Fully Qualified Domain Name (FQDN). Support for more advanced
features, e.g., the assignment of SSL certificates to use HTTPS connections, is not yet offered
by the APIs of the evaluated platforms.

Environment Variables

Environment variables, which are often also only referred to as variables, represent key-
value pairs that are available to an application at different stages of their lifecycle. On local
systems, e.g., UNIX systems, those key-value pairs are loaded into the system’s path via the
.bashrc file. The variables often serve as configuration parameters, for instance credentials or
destination addresses to third party systems and services. The EnvironmentVariable class
of the abstraction layer’s API has two specific properties, key and value. Applications can
retrieve the value from the system’s path via the key that must be unique per application.

Installed Services

In Section 3.1.2 the Service class, representing common middleware functionalities that
can be added to an application, was introduced. This paragraph focuses on the Installed-
Service class which describes a service that was already installed and bound to a parent
application. Installed services share all properties of the general service, but are enriched
with additional information. The optional web_url property of the installed service points
to the web interface of the service. The identifier of the currently used service plan shall be
shown as the active_plan. As some services also require or provide their own variables, they
are made available as embedded collection named properties. The variables of the service

3 Design 20

shall not be visible as EnvironmentVariable and only appear as properties of an installed
service. Similar to the class EnvironmentVariable they possess key and value properties.
Moreover, the description property contains additional information on the context of the
variable.

3.2 API Structure

Progressing from the API operations and objects from the previous chapters, this section
presents the structure of the Nucleus API from a global perspective. At first, the associations
between objects and operations to implement all required CRUD operations are shown.
Thereafter, more general API definitions are introduced, e.g., the common error schema.

Resource maps are known to be one way of visualizing RESTful APIs. A resource map of
the Nucleus API is presented in Figure 5. This figure does not show all operations that are
available on the objects, but tries to present the URL paths of the objects and how they
can be created, resolved or updated. Object properties are also neglected, except for the
associations with other API objects. As shown in the legend of the figure, API resources
are depicted as rectangles. Resources with green background represent collections, whose
objects can be returned as a list. Collection resources with a double border also allow that
new objects can be created via POST requests. The content of the rectangles stands for
the URL path at which the resource shall be retrievable. Curly braces need to be replaced
with the ID of the object they refer to, for instance {e} needs to be replaced with the
ID of the endpoint that shall be used. Resources with a white background represent a
specific object instance. A double border on such an instance shows that the object can be
changed via PATCH requests. In addition to the URL path, the lower part of the rectangles
contains the references of the object. References with round borders represent an object,
usually parental objects. All references with rectangular borders reference entire collection
resources, usually child objects. Arrows are the connections between resources. Besides the
references that link to specific resource instances, the connection from the list resource to
the object resource indicates the type of the list’s elements. All operations belong to one
API version, as indicated by the API version node at the top of the figure. From there, the
figure is separated into four dedicated API groups:

The Nucleus group is depicted in the top left of the API resource map. Below the version
of the Nucleus API, the resources of all three objects are the only ones with an API top
level path. All resources in this group are public and do not require authentication. The
vendor collection resource can be used to show a list of all supported vendors, whereas
specific vendor objects can be retrieved via the instance resource. Vendor objects cannot be
created, deleted or updated at runtime as they link to the logic which communicates with
the PaaS system that must be implemented by an adapter class. Similar to the vendors,
providers and endpoints can also be listed or retrieved. As indicated in the illustration, they
can additionally be created, updated or deleted at runtime. When creating or modifying
provider or endpoint objects, the only requirement is that the names must be unique amongst
the providers and endpoints of all vendors. All other resources, e.g., applications, are nested
below the endpoint to which they belong.

The service group implements a dedicated group focused on providing information about
the available services. Valid authentication credentials of the chosen endpoint are required.
Service objects can be loaded as a collection via the list resource or as a specific instance

3 Design 21

API version:
/v1

Legend :

listable resource

POST
to create a new instance

Modifyable Resource
PATCH to update the instance
DELETE to delete the instance

...

Resource Map
Nucleus API

/v1/vendors

linksTo

This map shows how the resources
are in relation amongst each other.
It is not a complete listing of all
resource properties and their
actions.

/v1/vendors/{v}

providers

/v1/vendors/{v}/providers

/v1/providers/{p}

vendor

/v1/providers/{p}/endpoints

/v1/endpoint/{e}/applications/{app}

endpoint

domainslogs

/v1/endpoint/{e}/applications/
{app}/domains/{domain}

application

/v1/endpoint/{e}/
applications/{app}/vars/{var}

application

/v1/endpoint/{e}/
applications/{app}/logs/{log}

application

services

provider

/v1/endpoints/{e}/
applications

endpoints

Resource instance

reference / link

nested instance collection

/v1/endpoints/{e}/services

/v1/endpoint/{e}/services/
{service}

endpoint

/v1/endpoint/{e}/applications/
{app}/services/{service}

application

env. variables

/v1/endpoints/{e}

/v1/endpoints/{e}/services/
{service}/plans

plans

/v1/endpoint/{e}/
applications/{app}/domains

/v1/endpoint/{e}/
applications/{app}/vars

/v1/endpoint/{e}/
applications/{app}/logs

/v1/endpoint/{e}/
applications/{app}/services

/v1/endpoint/{e}/services/
{service}/plans/{plan}

service

Application Group

Nucleus Group

Service Group

services

/v1/endpoints/{e}/regions

regions

applications

/v1/endpoint/{e}/regions/
{region}

endpoint

Region Group

Figure 5: Nucleus API - Resource Map

via the service’s ID and strictly belong to the referenced endpoint. All subordinated service
plans, belonging to exactly one service, can be retrieved via the URL path that is nested
below the service resource’s path. As for the services, service plans can be gathered as col-
lection or individual object. Both objects and their collections are read-only. Service objects
and plans can neither be deleted, created nor updated by users. Services are maintained by
the provider of the endpoint.

The retrieval of all available deployment regions is maintained by the region group. It
provides two resources, the region list and specific resource instances. All region resources are
read-only and belong to the currently connected endpoint. Valid authentication credentials
of the chosen endpoint must be embedded in the requests against this group.

At the bottom of the figure, the application group is shown as largest of all groups. It
contains the list and instance retrieval for all applications, domains, logs, variables, and
installed services. The application group requires valid authentication credentials against

3 Design 22

the chosen endpoint. The application resource is nested below the endpoint whereas the
domains, logs, variables, and installed services are nested below the application to which
they belong. All of the application’s child objects link to their parent application and are
referenced in the application object themselves.

3.2.1 Authentication

In the previous subsection the different API groups were introduced. Except for the public
Nucleus group, all other groups require valid authentication credentials for any request.
Credentials are a combination of a username and a password. Some providers also use the
user’s email address as username.

We choose to use HTTP Basic authentication for the abstraction layer’s web-based API.
However, this decision urges to use only HTTPS encrypted connections as the HTTP basic
authentication information are transmitted in Base64 encoded cleartext and would therefore
be an easy target for attackers. More secure authentication techniques, for instance HTTP
digest authentication, had to be rejected as the endpoints themselves only accept credentials
or API tokens, but no calculated digest values. Another approach would be to rely only on
API tokens, but as of now not all providers offer this authentication method. With HTTP
basic authentication the username and password are received, which can then be used for
direct authentication or to obtain all needed API tokens.

In order to use HTTP Basic authentication, the credentials must be submitted via the
HTTP Authorization header. The value of the key-value pair shall be the authentication
method, followed by a Base64 encoded combination of the username and password which
is separated by a semicolon [FHH+99; FR14a]. Listing 1 shows the Authorization header
for an exemplary username MyUsername and its password MyPassword.

Listing 1: API Authentication Header example to be used with Nucleus
1 Authorization: Basic TXlVc2VybmFtZTpNeVBhc3N3b3Jk

3.2.2 Versioning and Accept Header

The Nucleus API follows the semantic versioning specification45. Nucleus shall allow to
serve multiple versions of the API at once and provide legacy support. Each non-backward
compatible change of the application, e.g., additional required parameters, must result in an
increase of the major API version. If the user does not request a specific API version, the
latest release version shall be used as default. To request a specific API version, the user
must specify the version in the HTTP Accept header and refer to the vendor ’nucleus’.
Code Listing 2 shows a valid Accept header to request API version ’v1’. In case of invalid
accept headers, for instance an unknown version or vendor, the HTTP status code 406 shall
be returned in accordance with the latest HTTP 1.1 standard [FR14b].

Listing 2: API Accept Header example to be used with Nucleus
1 Accept: application/vnd.nucleus−v1

45Semantic Versioning 2.0.0. URL: http://semver.org (Retrieved: May 12, 2015).

http://semver.org

3 Design 23

3.2.3 Message Formats

The response messages of the API can be categorized into three groups: Object presentations,
collections of objects, and errors. The objects as well as their commonalities that form a
common message format have already been introduced in Section 3.1. Discrete child objects
that can also be retrieved via dedicated API resources shall generally not be included inside
an object’s presentation. For instance, the application’s representation shall not include any
information about its variables, domains or services. However, as described in Section 3.1,
all objects with child objects include references pointing to these collections that can be used
to navigate through the API.

Following the definitions of the API objects and object collections, all necessary information
on API errors are described in the next paragraphs.

Error Schema

All API errors that are passed to the user shall follow a common schema. The defined error
schema contains five parts that present the relevant error information, brief resolution guides
and optionally also a link to a more comprehensive API documentation on a web page.

status The HTTP status code of the error, for instance 404 if an object or a
resource could not be found. Compare to the next paragraph for a list of
all allowed error status codes.

error_code A unique error code to identify the error. The code consists of
two parts, starting with three numbers that are equal to the status code,
followed by three more numbers to identify the specific error.

message A basic and easily understandable description of the error. Can be
shown to the user.

dev_message The developer message, containing more detailed explanations
why the error might have occurred. In case of failures related to the user’s
requests, there are also first hints how to fix the request.

more_info Link to an online documentation at which one can explain the in-
sights of an error and present detailed resolution approaches.

Error Status Codes

The two main groups of HTTP error codes are either user related errors or requests that
failed on the server side. User related errors range from 400 to 499, whereas server related
errors are indicated by error numbers between 500 and 599. Within Nucleus’ API definitions,
user errors are mostly thrown in case of bad request parameters, but in case of error 422
also if an action cannot be invoked as preconditions are not fulfilled.

400 - Bad Request The request is invalid. This error usually occurs on write
requests, if not all required parameters are specified or contain invalid values.

3 Design 24

401 - Unauthorized A requests is unauthorized if no authentication creden-
tials are provided or if they are rejected by the endpoint. In accordance
with RFC7235 [FR14a].

404 - Not Found The resource or the object cannot be found. This error oc-
curs for unknown URLs, e.g., due to spelling errors or if there is no object
instance with the given ID.

406 - Not Acceptable This error indicates an invalid accept header. Either
the API vendor or the API version cannot be found.

422 - Unprocessable Entity The error “means the server understands the
content type of the request entity [. . .], and the syntax of the request entity
is correct (thus a 400 (Bad Request) status code is inappropriate) but was
unable to process the contained instructions” [Dus07, p. 77]. This status
is returned if any conditions are violated, e.g., an application cannot be
started as there is no application data available yet.

Server errors can originate either directly from Nucleus or may be forwarded from the active
endpoint. Especially the error codes 503 and 504 are relayed from the platform, with no
possibility for the API to transparently resolve the error.

500 - Internal Server Error Internal server errors can either be caused by
Nucleus or originate from the platform. The error indicates unexpected
conditions or behavior and cannot be fixed by the user in most cases.

501 - Not Implemented All operations that are not (yet) implemented by an
adapter shall raise this error.

503 - Service Unavailable This error is relayed by Nucleus. Usually the PaaS
endpoint is available again only seconds after the failed request. Sometimes
it also indicates scheduled maintenance or platform updates.

504 - Gateway Timeout This error is passed on from the platform, which
raised an internal timeout error. It cannot be known to what degree the
request has been processed or if it was executed at all.

Detailed information on returned status codes of valid and successful requests of each Nucleus
operation can be found in Section 3.3.

3.3 API Operations

This section describes the most important API operations in detail. In general, all operations
are based on four HTTP methods: GET, PATCH, POST and DELETE.

Operations using the GET method always retrieve certain objects or a collection of objects.
They never inflict any changes on the system and shall return the same result if executed
multiple times until another action changes the object. Nevertheless, responses cannot always
be expected to return identical results as changes can also be triggered by internal system
actions, for instance if an application transitioned into another state, e.g., suspended.
Successful responses of GET requests are always expected to return the status code 200. The

3 Design 25

PATCH method is used solely to update existing objects. Parameters shall be optional and only
the provided fields will be changed inside the object. Similar to the GET method, the HTTP
status code 200 is used for successful operations. The POST method does not only create new
objects, but also triggers actions on existing objects, e.g., to change the application’s state.
In case of successful actions, the status code 200 shall be returned. However, if a new object
was created, the code should be 201. Objects can be removed with the help of the DELETE
method. If the deletion is successful, the returned status code is expected to be 204.

HTTP allows several ways to pass parameters to the server, but only a few of them are
required to create the Nucleus API. One of the most commonly used approaches is the use
of query parameters which appends key-value pairs directly to the URL. Header parameters
are embedded in the request’s headers. A third approach is the so called path-templating,
whereby parameters are part of the URL’s path. In the majority of cases, path-templating is
used to create RESTful APIs. A form is usually utilized to send the user’s input data to the
server. The default content type for web forms is application/x-www-form-urlencoded.
Forms must be submitted with an altering request type, for instance the POST method. The
payload can also be added directly to the request’s body, but this does allow only one key-
value pair to be sent. However, the specification of the multipart/form-data content type
also allows to provide more than one parameter within the request’s body [Mas98; FR14b].

In comparison to the initially presented approach of Chapter 2, not all of the operations
that were shown in Table 3 are adopted in the final API specification. The five operations
mentioned below were left out, mostly for compatibility reasons:

Scaling/AUTOSCALE The operation to enable or disable autoscaling has
been neglected in favor of a Boolean autoscale property inside the Appli-
cation class. The functionality remains unchanged.

Domains/CHECK NAME & Application/CHECK NAME Checking if
a name is already taken on a platform cannot be achieved reliably with the
current API functions of the platforms.

Domains/UPDATE Updating a domain is not of use as long as the domain
object has only one property, the domain name. Additionally, Heroku and
cloudControl do not offer update methods themselves. The workaround to
delete the existing and create a new domain that would have been used
for those platforms is the same approach which can now be applied at the
abstraction layer’s API.

Logging/GET STATISTICS Statistics are only supported by Cloud Foundry
and Heroku. There are also big differences in the format and content of the
returned objects. This feature was postponed to focus on more important
aspects.

In the following, the most significant operations of the specified API are introduced. Op-
erations that are mostly identical in terms of the request’s structure are not included. A
complete definition of the API’s operations is available in the API documentation of the re-
leased project. More information about this API documentation and how it can be accessed
is described in Section 4.10.

Table 4 shows the general format that is used to present the API operations. Its first
row contains the HTTP method, the group to which the operation belongs, the class of the

3 Design 26

returned object and the expected status code of a successful response. The second row shows
the URL path at which the operation can be called. Curly braces indicate variables which
must be populated with dynamic values. The third row list possible operation parameters.
Optional parameters are printed in italic script, whereas required parameters are in bold
letters. The third column in the parameters row determines where the parameter must be
made available. The object type that must be provided is shown in the fourth column. An
additional description of the value is presented in the last column of the parameters row. The
two remaining rows list pre- and postconditions of the API operation. If no postcondition
is mentioned, the object is not supposed to be changed by this request.

HTTP
method

Operation group Response object Response
status code

URL path /the/url/path/with/a/{variable}
Description A brief description of the operation’s intentions

required-param path String Required path parameterParameter(s) group/optional-param form String Optional parameter in a nested group
Precondition(s) What must be the case that the command can be executed, e.g., a state the app must be in
Postcondition(s) All conditions that must be true when the operation succeeded and all triggered actions finished

Table 4: General API operation table format

3.3.1 Vendor, Provider, and Endpoint Operations

At the beginning of Chapter 3, the idea of a public API to manage the vendor, provider, and
endpoint objects was introduced. Originating from this definition, Table 5 shows selected
read operations and Table 6 the most essential write operations.

All three object types can be retrieved as collection or individual instance via GET requests.
The first entry of Table 5 shows the enumeration of all known vendors. In the second table
entry, one can see the request to retrieve a specific vendor, which requires the vendor_id
to be set as path parameter. Entry three highlights the retrieval of a child resource, in this
case all providers that are registered for a specific vendor platform. This operation requires
the vendor’s identifier and returns a list of all associated providers. Providers, endpoints,
and child collections of theirs can be retrieved equivalently.

GET Vendor VendorList 200
URL path /vendors
Description List all supported vendor platforms

GET Vendor Vendor 200
URL path /vendors/{vendor_id}
Description Get a specific vendor object
Parameter(s) vendor_id path String ID of the vendor object to be retrieved

GET Vendor ProviderList 200
URL path /vendors/{vendor_id}/providers
Description List all providers associated with this vendor
Parameter(s) vendor_id path String ID of the vendor object to be retrieved

Table 5: Vendor, Provider and Endpoint object: read operations

As an illustration of the write operations concerning the vendors, providers, and endpoints,
four selected operations are presented in Table 6. A POST request in the first entry shows
how to create a new provider. In comparison, entry two shows the operation to create a
new endpoint, which also allows to provide additional form parameters besides the objects

3 Design 27

desired name. The third entry describes the update of an endpoint using the PATCH method
whereby all form parameters are optional. Entry four concludes the exemplary operations
with the deletion of an endpoint object. The delete request does not return any content as
it expected to respond with status code 204. Equivalent operations, not explicitly shown
here, are available to update or delete provider instances.

POST Vendor Provider 201
URL path /vendors/{vendor_id}/providers
Description Create a new provider and associate with this vendor

vendor_id path String The vendor’s IDParameter(s) provider/name form String Name of the provider entity to create
Postcondition(s) Provider created and associated with this vendor

POST Provider Endpoint 201
URL path /providers/{provider_id}/endpoints
Description Create a new endpoint and associate with this provider

provider_id path String The provider’s ID
endpoint/name form String Name of the endpoint entity to create
endpoint/url form String Endpoint API URL
endpoint/trust form Boolean If trusted the SSL certificates won’t be

validated
Parameter(s)

endpoint/app_domain form String Where applications can be accessed by
default

Postcondition(s) Endpoint created and associated with this provider

PATCH Endpoint Endpoint 200
URL path /endpoints/{endpoint_id}
Description Update the endpoint object

endpoint_id path String The endpoint’s ID
endpoint/name form String Name of the endpoint object
endpoint/url form String Endpoint API URL
endpoint/trust form Boolean If trusted, the SSL certificates will not be

validated
Parameter(s)

endpoint/app_domain form String Where applications can be accessed by
default

Postcondition(s) Endpoint updated, provided fields replaced existing data, not specified fields remain unchanged

DELETE Endpoint - 204
URL path /endpoints/{endpoint_id}
Description Delete the provider entity
Parameter(s) endpoint_id path String The endpoint’s ID
Postcondition(s) Endpoint deleted

Table 6: Vendor, Provider and Endpoint object: write operations

3.3.2 Service and Service Plan Operations

The list of additional services, e.g. data stores, which are offered to be created and bound
to applications is read-only and maintained by the provider of the selected endpoint. All
operations of this API group are shown in Table 7.

GET Service ServiceList 200
URL path /endpoints/{endpoint_id}/services
Description List all available services of the platform
Parameter(s) endpoint_id path String The endpoint’s ID

GET Service Service 200
URL path /endpoints/{endpoint_id}/services/{service_id}
Description Get a specific service object

endpoint_id path String The endpoint’s IDParameter(s) service_id path String ID of the service to retrieve

3 Design 28

GET ServicePlan ServicePlanList 200
URL path /endpoints/{endpoint_id}/services/{service_id}/plans
Description List all available plans of the service

endpoint_id path String The endpoint’s IDParameter(s) service_id path String ID of the service to retrieve

GET ServicePlan ServicePlan 200
URL path /endpoints/{endpoint_id}/services/{service_id}/plans/{plan_id}
Description Get a specific plan object of the service

endpoint_id path String The endpoint’s ID
service_id path String ID of the service to retrieveParameter(s)
plan_id path String ID of the service plan to retrieve

Table 7: Service and service plan operations

3.3.3 Region Operations

Similar to the service group, regions are also read-only. Table 8 contains all operations to
retrieve a specific or all available deployment regions.

GET Region RegionList 200
URL path /endpoints/{endpoint_id}/regions
Description List all available deployment regions of the platform
Parameter(s) endpoint_id path String The endpoint’s ID

GET Region Region 200
URL path /endpoints/{endpoint_id}/regions/{region_id}
Description Get a specific deployment region object

endpoint_id path String The endpoint’s IDParameter(s) region_id path String ID of the region to retrieve

Table 8: Region operations

3.3.4 Application Object Operations

A selection of operations concerning the management of application objects is presented in
Table 9. The first two entries show how to retrieve a list of all applications the user has
access to, respectively a specific application. Entries three to five present the operations to
create, update, and delete an application instance. In order to create an application, the
name and the runtime language parameters must be provided. Optionally, the deployment
region and the autoscaling option may be specified. According to the providers used in our
prototype, application names must be unique amongst all applications that are registered at
the endpoint.

GET Application ApplicationList 200
URL path /endpoints/{endpoint_id}/applications
Description List all applications that are registered at the endpoint
Parameter(s) endpoint_id path String The endpoint’s ID

GET Application Application 200
URL path /endpoints/{endpoint_id}/applications/{application_id}
Description Get a specific application

endpoint_id path String The endpoint’s IDParameter(s) application_id path String ID of the application

3 Design 29

POST Application Application 201
URL path /endpoints/{endpoint_id}/applications
Description Create a new application at the endpoint

endpoint_id path String The endpoint’s ID
application/name form String The application’s name
application/runtimes form Array(String) Runtimes to be used for the application,

e.g., ’nodejs’
application/region form String Region where to deploy the application,

e.g., ’US’. Show available regions via
’/regions’Parameter(s)

application/autoscaled form Boolean Indicator if the application shall be au-
toscaled. Value is ignore on some plat-
forms.

Precondition(s) Application name is not yet used
Postcondition(s) Application created, state: CREATED

PATCH Application Application 200
URL path /endpoints/{endpoint_id}/applications/{application_id}
Description Update the application object

endpoint_id path String The endpoint’s ID
application_id path String ID of the application
application/name form String The application’s nameParameter(s) application/runtimes form Array(String) Runtimes to be used for the application,

e.g., ’nodejs’
Postcondition(s) Specified application fields updated with the provided values

DELETE Application - 204
URL path /endpoints/{endpoint_id}/applications/{application_id}
Description Delete the application

endpoint_id path String The endpoint’s IDParameter(s) application_id path String ID of the application
Postcondition(s) Application deleted

Table 9: Application object CRUD operations

Data Management

All three operations concerning the management of the application data are shown in Ta-
ble 10. The first entry presents the operation to deploy application data. In comparison to
other POST requests, this operations returns the status code 204 upon successful execution.
This code is used instead of 200 or 201 to reflect potentially still ongoing deployment after the
request returned, wherefore the application object may not instantly reflect the new state.
The application data which should be uploaded must be included in the body of the HTTP
request as compressed zip or tar.gz archive. The second entry summarizes all instructions
to download previously deployed application data. The GET request responds with binary
data in the form of the compressed application data. The desired archive format can also
be specified via a query parameter. Unless the application has already been deployed, the
download will fail with the error code 422. Rebuilding the application is described in the
third table entry. Similar to the data download, the rebuild can only be invoked if the
application has already been deployed. Except for unexpected errors due to changes in the
provided runtimes, the rebuild shall not alter the application state once being completed.

POST Application - 204
URL path /endpoints/{endpoint_id}/applications/{application_id}/data/deploy
Description Deploy application data

endpoint_id path String The endpoint’s ID
application_id path String ID of the applicationParameter(s)
file body File Application archive (zip or tar.gz)

Postcondition(s) Application data persisted. If state was CREATED it switches to DEPLOYED, otherwise state
remains unchanged.

3 Design 30

GET Application Binary data 200
URL path /endpoints/{endpoint_id}/applications/{application_id}/data/download
Description Download the deployed application data

endpoint_id path String The endpoint’s ID
application_id path String ID of the applicationParameter(s)
archive_format query String Compression format of the downloaded

archive (zip or tar.gz), default: zip
Precondition(s) Application state must not be CREATED

POST Application Application 200
URL path /endpoints/{endpoint_id}/applications/{application_id}/data/rebuild
Description Rebuild the application

endpoint_id path String The endpoint’s IDParameter(s) application_id path String ID of the application
Precondition(s) Application state must not be CREATED
Postcondition(s) Application build executed, state remains unchanged.

Table 10: Application object data operations

Application Lifecycle Management

Managing the lifecycle of an application is supported via the three operations, start, stop,
and restart, which are presented in Table 11. All three operations are nearly identical in
terms of their signature and do not require any additional parameters besides the endpoint
and application ID. However, all of them have different postconditions that shall apply after
the operation finished. After the start or restart operation was invoked, the application
shall switch to the running state. Likewise, the stop operation shall cause the application
to transition into the stopped state. If any of the commands fails during execution, the
application usually proceeds to the crashed state. Depending on the platform’s supported
states, the exact behavior may slightly vary between different providers.

POST Application Application 200
URL path /endpoints/{endpoint_id}/applications/{application_id}/actions/start
Description Start the application

endpoint_id path String The endpoint’s IDParameter(s) application_id path String ID of the application
Precondition(s) Application state must not be CREATED
Postcondition(s) Application start triggered. If the start is successful, state changes to running. If an error occurs

the state changes to crashed.

POST Application Application 200
URL path /endpoints/{endpoint_id}/applications/{application_id}/actions/stop
Description Stop the application

endpoint_id path String The endpoint’s IDParameter(s) application_id path String ID of the application
Precondition(s) Application state must not be CREATED
Postcondition(s) Application stop triggered, state changes to stopped.

POST Application Application 200
URL path /endpoints/{endpoint_id}/applications/{application_id}/actions/restart
Description Restart the application

endpoint_id path String The endpoint’s IDParameter(s) application_id path String ID of the application
Precondition(s) Application state must not be CREATED
Postcondition(s) Application restart triggered. If the restart is successful, state changes to running. If an error

occurs the state changes to crashed.

Table 11: Application object lifecycle operations

3 Design 31

Scaling

Evolving from the add instance, remove instance and scale operations which were
defined in the initial evaluation, only a single scale operation is defined inside the API to cope
with all needed scaling actions (see Table 12). To add or remove application instances, the
operation’s instances parameter must be set to the desired number of application instances.
If the number is greater than the currently available instances, additional instances will be
created, otherwise instances will be removed. Due to restrictions on some platforms, there
must always be at least one application instance. Requests for zero or negative instance
numbers will fail and return an error to indicate a bad request. Vertical scaling is not
yet included in this prototype. Further information about vertical scaling, the issues, and
possible solutions are going to be presented as future work in Section 6.

POST Application Application 200
URL path /endpoints/{endpoint_id}/applications/{application_id}/actions/scale
Description Scale the application

endpoint_id path String The endpoint’s ID
application_id path String ID of the applicationParameter(s)
instances form Integer Desired number of application instances

Postcondition(s) Available application instances must match defined number of the request’s form parameters

Table 12: Application object scale operation

3.3.5 Application Child Object Operations

In the previous chapters, the child objects of an application have already been mentioned
numerous times. This section describes the most important operations to manage those
objects. Table 13 contains the operations to retrieve the child objects or collections of them
and Table 14 presents the methods to create and associate new child objects. All collections
of child objects that are associated with an application can be retrieved in a similar manner.

The first definition in Table 13 shows that the request path has to be nested below an
endpoint and application. Retrieving a specific instance of the child collections can be
achieved by appending the ID of the object as additional path parameter. The second entry
of the table illustrates this behavior. Both definitions can be translated to the other objects
except Domains as well. All URL paths needed for those operations are visualized in the
API resource map, which is shown in Figure 5.

GET Domain DomainList 200
URL path /endpoints/{endpoint_id}/applications/{application_id}/domains
Description List all additional domains of the application

endpoint_id path String The endpoint’s IDParameter(s) application_id path String ID of the application

GET Domain Domain 200
URL path /endpoints/{endpoint_id}/applications/{application_id}/domains/{domain_id}
Description Retrieve a specific domain of the application

endpoint_id path String The endpoint’s ID
application_id path String ID of the applicationParameter(s)
domain_id path String ID of the domain

Table 13: Application object operations to retrieve child object instances and collections

Except for the log objects which can only be changed by the provider of the endpoint, new
domains, environment variables or services can also be added to an application by the user.
Those operations are defined in Table 14. As previously stated, the response of each request

3 Design 32

that creates new objects has the status code 201 to indicate that a new object was created.
Moreover, all parameters of the methods are mandatory.

POST Domain Domain 201
URL path /endpoints/{endpoint_id}/applications/{application_id}/domains
Description Add a new domain to the application

endpoint_id path String The endpoint’s ID
application_id path String ID of the applicationParameter(s)
domain/name form String FQDN where the application shall be

available at

POST Variable EnvironmentVariable 201
URL path /endpoints/{endpoint_id}/applications/{application_id}/vars
Description Create a new environment variable for the application

endpoint_id path String The endpoint’s ID
application_id path String ID of the application
variable/key form String key of the variableParameter(s)

variable/value form String value of the variable

POST Service InstalledService 201
URL path /endpoints/{endpoint_id}/applications/{application_id}/services
Description Install a new service and bind it to the application

endpoint_id path String The endpoint’s ID
application_id path String ID of the application
service/id form String ID of the service to installParameter(s)

plan/id form String ID of the plan to use with the service

Table 14: Application object operations to create and associate child objects

Operations to update the child objects follow those definitions, but as shown before, all form
parameters are optional for update requests. Additionally, all objects can also be deleted by
using HTTP’s delete verb with requests against specific object instances.

3.3.6 Application Logging Operations

Log objects are currently the only application child objects that allow more than the basic
CRUD operations to be executed. Table 15 contains the definitions of methods to download
or tail the logs of an application. The first entry shows how to download all log files of an
application, bundled as compressed archived. The archive format for the binary response
can be specified via the archive_format query parameter. The second example also returns
a binary archive, but contains only one specific log file. Next, the third entry shows the
operation to load the contents of a specific log file. The response is not an object, but the
actual content of the log file in plain text. Finally, the last entry defines how logs can be
tailed. The response is an ongoing chunked stream, which sends new chunks with log entries
as soon as they become available at the endpoint.

GET Log Binary archive data with all log files 200
URL path /endpoints/{endpoint_id}/applications/{application_id}/logs/download
Description Download all log files of the application

endpoint_id path String The endpoint’s ID
application_id path String The application’s IDParameter(s)
archive_format query String Compression format of the downloaded

archive (zip or tar.gz), default: zip

3 Design 33

GET Log Binary archive data with the log file 200
URL path /endpoints/{endpoint_id}/applications/{application_id}/logs/{log_id}/download
Description Download a specific log file

endpoint_id path String The endpoint’s ID
application_id path String The application’s ID
log_id path String The log’s IDParameter(s)

archive_format query String Compression format of the downloaded
archive (zip or tar.gz), default: zip

GET Log Log entries 200
URL path /endpoints/{endpoint_id}/applications/{application_id}/logs/{log_id}
Description Show all entries of a specific log file

endpoint_id path String The endpoint’s ID
application_id path String The application’s IDParameter(s)
log_id path String The log’s ID

GET Log Log entries, chunked response 200
URL path /endpoints/{endpoint_id}/applications/{application_id}/logs/{log_id}/tail
Description Tail the log and continue to receive updates as long as the stream is open

endpoint_id path String The endpoint’s ID
application_id path String The application’s IDParameter(s)
log_id path String The log’s ID

Table 15: Application logging operations

3.3.7 Vendor Specific Parameters

Even though the PaaS abstraction layer is designed to harmonize the actions of all supported
platforms, there are still vendor specific parameters that might have to be passed to the
platform from time to time. One example to illustrate the need for this feature is vertical
scaling on OpenShift. In OpenShift, the performance of an application instance must be
fixed when creating the application and cannot be altered afterwards. As the parameter of
OpenShift’s API is optional and uses a default value if not present, no parameters need to be
supplied through the abstraction layer. However, a user might want to use a different instance
size than the default one. To use vendor specific parameters, every input object of the API
shall accept the vendor_specific key, into which any combination of key-value pairs can be
placed, if POST or PATCH requests are invoked. Those values bypass the parameter validation
of the abstraction layer’s API and are added to the processed and documented parameters.
If keys occur twice, the vendor specific values shall be preferred and overwrite the processed
and documented parameters. Resources that accept vendor_specific parameters key are:
Application, Domain, Variable, and InstalledService.

Listing 3 summarizes these definitions and presents a curl command that creates a node.js
application on OpenShift. As mentioned above, the gear_profile is used to force OpenShift
to instantiate a medium gear instead of the default small size gear.

Listing 3: Vendor specific parameters in a CURL request example
1 curl −X "POST" "{API_URL}/api/endpoints/openshift−online/applications" −H "Authorization: Basic

{base64key}" −d "{\"application\":{\"name\":\"testapp1\",\"runtimes\":[\"nodejs\"],\"
vendor_specific\":{\"gear_profile\":\"medium\"}}}"

3.3.8 Custom Endpoint API Calls

Combining the previously introduced API operations, the majority of common operations
on all platforms are supported by the Nucleus API. However, in reality there can also be

3 Design 34

situations in which those operations will not cover all requirements of the users. As an
illustration, take the release management of Heroku’s platform API, which is not supported
by Nucleus. Releases describe a working combination of code, variables, and services that
are persisted and to which one can roll-back in case of unexpected application issues. To
let users access the release management or other proprietary operations, Nucleus features
custom endpoint API calls. Those requests can either be called against the root URL path
of the proprietary API or against a specific application. Form and body parameters that
are included in the native API requests are passed to the endpoint without validation or
modification. The response message and eventually arising errors are also forwarded without
any modifications.

Custom calls that target the root URL path of the endpoint’s API have to be called as pointed
out in Listing 4. The ENDPOINT_API_CALL_PATH must be replaced with the complete URL
path that shall be invoked on the endpoint’s API.

Listing 4: Custom API call against the endpoint
1 /api/endpoints/{ENDPOINT_ID}/call/{ENDPOINT_API_CALL_PATH}

If the call shall be made on an application object, the URL is slightly different as shown in
Listing 5. Here, the URL must also include the reference to the application object instance.

Listing 5: Custom API call against an endpoint’s application
1 /api/endpoints/{ENDPOINT_ID}/applications/{APPLICATION_ID}/call/{

ENDPOINT_API_CALL_PATH}

Listing 6 contrasts two API method calls against Heroku’s endpoint. The first and fourth
line show the call as it is described by Heroku itself, whereas the second and fifth line show
the equivalent calls when made via Nucleus.

Listing 6: Heroku API call vs. Nucleus custom API call against Heroku
1 /account
2 /api/endpoints/heroku/call/account
3

4 /apps/{app_id_or_name}/releases/{release_id_or_version}
5 /api/endpoints/heroku/applications/{app_id_or_name}/call/releases/{release_id_or_version}

3.4 API Mappings

This section describes the mappings of objects and operations to achieve the abstraction
layer and to harmonize the functionality as well as the object presentations of the four
platforms. The section distinguishes between the object mapping, describing where the
information to fill the response objects’ fields can be obtained from, and the operation
mapping which explains all methods and their execution plan to perform a Nucleus’ operation
on the platform.

3.4.1 API Object Mapping

The following sections show the mappings of the region, service, and application objects
with all their associated child objects. Object mappings are a main part of the abstraction

3 Design 35

between the platforms and a first step to solve some of the present semantic conflicts. The
rules demonstrate how the API objects of the abstraction layer can be populated with data
of the platforms’ original API objects. Most of the objects’ values can be applied without
modifications, but some fields require processing of the original value or even state dependent
solutions.

Region Mapping

Table 16 summarizes the region’s attribute mapping and shows where the values can be
taken from if not already present. By means of abstracting the differences properly, all plat-
forms shall return a static default region object if they do not support multiple regions. The
description shall mention the absence of the multi-region feature to prevent misunderstand-
ings. On Heroku, the name must be mapped to become the ID. The remaining fields are
already set. OpenShift’s region object already has a description that mentions important
aspects, for instance deployment restrictions. Both timestamps can be taken from a region’s
zone. The ID of Nucleus’ object is the region’s name.

cloudControl Cloud Foundry Heroku OpenShift
Attribute

Platform
Object Field Object Field Object Field Object Field

id - static - static region name region name
created_at - static - static region 3 zones min(created_at)
updated_at - static - static region 3 zones max(updated_at)
description - static - static region 3 region 3

Table 16: Region object attribute mapping

Service Mapping

Services, also referred to as add-ons or cartridges, are available on all four platforms. Table 17
lists the mapping for cloudControl and Cloud Foundry, whereas Table 18 contains Heroku’s
and OpenShift’s mappings.

On cloudControl, services are known as add-ons. Timestamps and a description are not
available at all. Add-ons do not have dependencies and the documentation URL can be
created based on the add-on’s name. An add-on has a free plan if at least one of the add-on’s
options has a thirty_days_price that is 0. Cloud Foundry has a rather complex service
model, but fully supports Nucleus’ object attributes. Services dependencies are properly
described and require no complex mapping. The service can be free if there is at least one
service-plan that is declared as free, too.

cloudControl Cloud Foundry
Attribute

Platform
Object Field Object Field

id addon name service/metadata guid
created_at 7 service/metadata created_at
updated_at 7 service/metadata updated_at
name addon 3 service label
description 7 service 3

release addon stage service version
documentation_url addon static + name service 3

required_services - empty array service requires
free_plan addon/options any(thirty_days_price == 0) service-plans any(free)

Table 17: Service object attribute mapping: cloudControl & Cloud Foundry

3 Design 36

Heroku labels services as addon-service. The documentation URL is not given, but can
be created analogous to cloudControl. Dependencies are not supported. A service can be
free if any of its plans has a price in cents that is 0. OpenShift does not allow to specify a
documentation URL for its cartridges. All remaining attributes can be retrieved. A cartridge
is free if there are no usage rates specified for it.

Heroku OpenShift
Attribute

Platform
Object Field Object Field

id addon-service 3 cartridge 3

created_at addon-service 3 cartridge creation_time
updated_at addon-service 3 cartridge creation_time
name addon-service 3 cartridge 3

description addon-service human_name cartridge 3

release addon-service state cartridge version
documentation_url addon-service static + name 7

required_services - empty array cartridge requires
free_plan service-plans any(price/cents == 0) cartridge empty(usage_rates)

Table 18: Service object attribute mapping: Heroku & OpenShift

Service Plan Mapping

On cloudControl, service plans cannot be accessed directly and have to be gathered from
the service retrieval response. Service plans are thereby referred to as options of the add-
on. A specific service plan is available at the position, say X, of the addon/options array.
Timestamps and a description of the plan are not available. Costs appear only as fixed
monthly charges, thus one static entry must be created for the API’s response. The same
applies to the price of the cost, which must be payed in the currency of the provider. The
currency must be hard-coded as there is no function to determine it via the provider’s API.
As of now this construct is working because there is no known cloudControl provider to
use more than one currency. When analyzing service plans on Cloud Foundry, one notices
that there are no proper attributes describing the costs of used services. Furthermore, the
solutions realized by the providers to circumvent this missing feature vary and do neither
follow a common format nor a normalization. Pivotal IO specified how to access service
plans via the API in their documentation46. IBM Bluemix does not describe the format in
its documentation, but it can be deducted from response objects of their API. Altogether, it
remains unclear how further providers of Cloud Foundry solved this problem. The structure
of Nucleus’ API objects is already capable to handle the pricing models of Pivotal IO’s and
IBM Bluemix’s costs, nevertheless this feature has been postponed into later versions to
evaluate further options in the meantime. Besides the service plan’s costs, all remaining
fields can be mapped without any discomfort.

cloudControl Cloud Foundry
Attribute

Platform
Object Field Object Field

id addon/options[X] name service_plan/metadata guid
created_at 7 service_plan/metadata created_at
updated_at 7 service_plan/metadata updated_at
name addon/options[X] 3 service_plan/entity 3

description 7 service_plan/entity 3

free addon/options[X] thirty_days_price == 0 service_plan/entity 3

costs - one array entry 7

costs/period - month 7

costs/per_instance addon/options[X] price_is_per_box 7

46PivotalIO - Catalog Metadata. URL: http : / / docs . pivotal . io / pivotalcf / services / catalog -
metadata.html (Retrieved: June 11, 2015).

http://docs.pivotal.io/pivotalcf/services/catalog-metadata.html
http://docs.pivotal.io/pivotalcf/services/catalog-metadata.html

3 Design 37

cloudControl Cloud Foundry
Attribute

Platform
Object Field Object Field

costs/price - one array entry 7

costs/price/currency - determined by the provider 7

costs/price/amount addon/options[X] thirty_days_price 7

Table 19: ServicePlan object attribute mapping: cloudControl & Cloud Foundry

Heroku provides only one cost per plan and one price per cost. Costs, which are always given
in USD, are never based on the number of active dynos. However, the prices are given in
cents and must be adapted to match the general decimal format. OpenShift V2 offers only
rudimentary support for service plans. At the time of writing, all cartridges except one did
not charge any costs. If there is at least one usage_rates specified in the cartridge, the ID,
period and amount values can be taken from this object. The default mapping, which shall
be applied when no usage_rates are given, creates a default plan with no costs and will
also be used for private deployments of the platform where no marketplace is available.

Heroku OpenShift
Attribute

Platform
Object Field Object Field Default

id plan 3 cartridge/usage_rates[X] plan_id default
created_at plan 3 cartridge creation_time
updated_at plan 3 cartridge creation_time
name plan 3 cartridge/usage_rates[X] plan_id default
description plan 3 - static
free plan/price cents == 0 - false true
costs - one entry - one entry
costs/period plan/price unit cartridge/usage_rates[X] duration hour
costs/per_instance - false - false
costs/price - one entry - three entries

CAD
EURcosts/price/currency - USD -
USD

cad
eurcosts/price/amount plan/price cents/100 cartridge/usage_rates
usd

0.00

Table 20: ServicePlan object attribute mapping: Heroku & OpenShift

Application Mapping

Nucleus’ application object is not only a core part of the abstraction layer, but the mapping
also has to consider more aspects than most other objects. All mappings are listed in tables
21 and 22.

On cloudControl, the region and autoscaled fields must be hard-coded as both features
are not supported by the platform. Furthermore, as cloudControl only allows one run-
time per application, the runtimes field must be an array with one value equal to the
active_runtime. The active_runtime has to be determined in two different ways. If a
custom buildpack is used, which is indicated by the value ’custom’ in the app/type/name
field, the buildpack_url has to be used. Otherwise, app/type/name describes the valid
buildpack. On Cloud Foundry, only two mappings require more effort than just referencing
different fields. With Stackato47 supporting the autoscaled feature, the presence of the
field must be checked. If the field exists, its value shall be taken. If not, automatic scaling
is not supported and the value has to be set to false. Moreover, the web_url field has to
rely on a static configuration as there is no approach to identify the default domain at which
applications will be available.

47Stackato 3.4. URL: https://www.activestate.com/stackato (Retrieved: October 31, 2014).

https://www.activestate.com/stackato

3 Design 38

cloudControl Cloud Foundry
Attribute

Platform
Object Field Object Field

id app name app metadata/guid
created_at app date_created app metadata/created_at
updated_at app date_modified app metadata/updated_at
name app 3 app 3

app type/nameactive_runtime app buildpack_url app detected_buildpack

runtimes - array(active_runtime) app buildpack
region - default - default
autoscaled - false app autoscale_enabled (Stackato) OR false
instances deployment min_boxes app 3

web_url deployment default_subdomain app guid + static configuration
release_version deployment version app version
state described in Section 3.4.1

Table 21: Application object attribute mapping: cloudControl & Cloud Foundry

Most of Heroku’s application mappings can be obtained from the application object. Map-
ping rules must be considered for the instances, release_version and runtimes fields.
The number of application instances can be determined by counting all workers of the
type web that are listed in the formation object. All runtimes can be gathered by loading
the buildpack-installations object and presenting an array of the individual buildpack’s
URLs. A region is already included in the application object of Heroku, but as only an iden-
tifier and not a nested object is wanted, the name of the region object must be remapped.
To diagnose the release_version, there are two approaches. First, if no dyno is assigned
to the application, the ID of the latest version that is contained in the releases object can
be used. The second approach, if any dyno is assigned, is to use the ID of the latest version
that is assigned to one of the dynos. OpenShift does not support updating the application
object after creation, wherefore there is also no update timestamp. The runtimes field is
supposed to be an array with one entry, the assigned active_runtime, as there can only be
one runtime per application on OpenShift. The region can be identified by analyzing the
gear_group and the individual regions of the gears. The release_version of the applica-
tion is available in the sha1 field of the active deployment. An active deployment can be
identified by comparing a deployment’s activations and retrieving the deployment with
the latest activation timestamp.

Heroku OpenShift
Attribute

Platform
Object Field Object Field

id app 3 app 3

created_at app 3 app creation_time
updated_at app 3 7

name app 3 app 3

active_runtime app buildpack_provided_description app framework
runtimes buildpack-installations array(buildpack/url) app array(framework)
region app/region name gear_groups gears/region
autoscaled - false app scalable
instances formation quantity (type: web) app gear_count
web_url app 3 app app_url

releases id[max(version)]release_version dyno release/id[max(release/version)] deployments active(deployment)/sha1

state described in Section 3.4.1

Table 22: Application object attribute mapping: Heroku & OpenShift

Application State Detection Rules

To put the generic PaaS application lifecycle (see Section 3.1.3) into practice, we require a
set of rules explaining how an application’s state can be derived on the different platforms.
Figure 6 visualizes the initial detection rules for all four platforms as decision trees. The

3 Design 39

rules cover the most common states as described in the platform’s documentation and as
identified during the examination of the platform.

OpenShift’s application states can be derived for the most part by examining the state
of the application’s gears. Moreover, additional information on the existing deployments
is needed. The most complex task is the detection of the deployed state, precisely the
initial deployment. To reveal this state, we need to sum up the number of deployment
activations, excluding those of the initially available deployment. If the sum is exactly one,
the application has to be in the deployed state. However, the original deployment, which
is provided automatically by OpenShift, must still be in the list of the kept deployments for
this rule to apply. Otherwise, the application is not in the deployed state. The detection of
the remaining states is self-explanatory.

Openshift
∀ g ∈ ApplicationGears:

state(g) = 'new'

CREATED

true

false

false

kept_deployments > 1

active_deployment is
original_deployment

true true

false

first deployment of same age
 as application

true

false

∀ g ∈ ApplicationGears:
state(g) = 'stopped'

DEPLOYED
true

∀ g ∈ ApplicationGears ∃g:
state(g) = 'started' RUNNING

true

STOPPED
true

SUSPENDED
true

false

false

false

false

∀ g ∈ ApplicationGears:
state(g) = 'stopped'

∀ g ∈ ApplicationGears:
state(g) = 'idle'

Heroku
repo_size == 0 AND

 slug_size == 0 CREATED
true

false

false

size(dynos) == 0

maintenance OR
no dyno running

false

∀ d ∈ dynos ∃d:
state(d) = 'up'

RUNNING
true

∀ d ∈ dynos:
state(d) = 'idle'

SUSPENDED
true

false

DEPLOYED
true

STOPPED
true

false

cloudControl

Cloud Foundry

Git repository has a
non-empty branch

DEPLOYED
true

false

deployment/version == -1

false

true

false

CREATED

RUNNING

SUSPENDED

deployment/state == 'idle'
true

application:
package_state == 'FAILED'

CRASHED
true

true

application:
state == 'STARTED'

false

true

false

RUNNING

STOPPED

CREATED

application:
staging_task_id == null

true

application:
package_state
 == 'STAGED'

true

DEPLOYED

deployment download
fails

false

false

false false

true true

kept initial
deployment

all activations -
initial activations = 1

false

Figure 6: Application state detection rules

Heroku’s detection rules first evaluate whether there has been any data uploaded to the
platform. If not, the application must be in the created state. In case no dyno is assigned
to the application, the deployed state is most appropriate. During maintenance, or when
all assigned dynos are down, the application is stopped. If none of the existing rules applies,
the application state could not be detected, i.e., is unknown. In cloudControl’s lifecycle the

3 Design 40

application is running if a version has been deployed and the deployment’s state is not
idle. When there is no deployed version, the Git repository must be evaluated to detect the
difference between the created and deployed state. The application is in the deployed
state if there exists any branch on the repository which indicates an existing deployment.
When there is no branch, the application has only been created. On the Cloud Foundry
platform, one can use the application’s state, package state and staging task properties as
well as the deployment data download method to deduct the necessary set of rules. After
starting an application it is either running if the package state is staged or crashed if it has
failed. A staging task ID with a null value indicates that the application has been stopped.
If a deployment data download returns a URL where the data could be downloaded from,
the application is deployed. Receiving an error for the download request suggests that the
application environment has only been created.

In general, the above rules cover most scenarios. However, some of the detection rules might
need further enhancements to improve the accuracy, especially for applications that are
managed with varying interfaces and not solely via Nucleus.

Domain Mapping

The domain information can be mapped as described by the rules shown in Table 23. One
obvious fact is the different naming of the concept domain among the platforms. Heroku uses
a term identical to Nucleus’, whereas cloudControl and OpenShift label domains as alias and
Cloud Foundry refers to them as a combination of routes and domains. Cloud Foundry uses
domains to reuse second level domains. With the use of routes, domains of a deeper level
can be bound to an application. If the mapped route has a defined host, then the mapping
needs to combine this host with the domain’s name, otherwise only the domain’s name must
be used.

cloudControl Cloud Foundry Heroku OpenShift
Attribute

Platform
Object Field Object Field Object Field Object Field

id alias name route metadata/guid domain 3 alias 3

created_at alias date_created route metadata/created_at domain 3 7

updated_at alias date_modified route metadata/updated_at domain 3 7

route hostname alias name domain name domain hostname alias id

Table 23: Domain object attribute mapping

Environment Variable Mapping

On all four platforms, the mapping of Nucleus’ environment variables lacks support for the
object’s timestamps. In Table 24, the mappings of cloudControl and Cloud Foundry are
listed. All mapping rules for Heroku’s and OpenShift’s variables are shown in Table 25.

On three platforms, namely cloudControl, Cloud Foundry and Heroku, the variables are not
presented as discrete objects but can only be extracted from an enumeration. To be able to
use environment variables on cloudControl, the free addon config.free must be installed.
The variables are then referred to as config vars, likewise to the naming on Heroku. On
Cloud Foundry the variables are accessible in the environment’s environment_json field.
OpenShift is the only platform that makes variables available as dedicated API objects.

3 Design 41

cloudControl Cloud Foundry
Attribute

Platform
Object Field Object Field

id config.free settings/config_vars/{key} env environment_json/{key}
created_at 7 7

updated_at 7 7

key config.free settings/config_vars/{key} env environment_json/{key}
value config.free settings/config_vars/{value} env environment_json/{value}

Table 24: Environment variable object attribute mapping: cloudControl & Cloud Foundry

Heroku OpenShift
Attribute

Platform
Object Field Object Field

id config-vars {key} environment-variable name
created_at 7 7

updated_at 7 7

key config-vars {key} environment-variable name
value config-vars {value} environment-variable 3

Table 25: Environment variable object attribute mapping: Heroku & OpenShift

Log Mapping

On all selected platforms, there exists no API operation to list the available logs. For this
reason, we include all log files which are available, e.g., inside the application’s logs directory.
Furthermore, due to the variety of data structures, the log entries are also passed without
modification. Additionally, the creation time is retrieved from the application and the update
timestamp always uses the current time to provide at least an approximate information.

Installed Service Mapping

Most of the mappings are identical to those of the general services as described in Sec-
tion 3.4.1.

For a proper mapping on cloudControl, two objects are needed: the general add-on descrip-
tion as well as the assignment object of the service to the application. Installed services are
part of the deployment, which itself is part of the application. The Cloud Foundry mapping
requires the service binding object which includes or points to all other required objects,
e.g., the service instance. The ID of the binding object is also used for Nucleus’ object. This
is contrary to all other platforms that still operate with the original service identifier.

cloudControl Cloud Foundry
Attribute

Platform
Object Field Object Field

id see Table 17 binding metadata/guid
created_at see Table 17 binding metadata/created_at
updated_at see Table 17 binding metadata/updated_at
active_plan addon assignment addon_option/name instance service_plan_guid
web_url 7 instance dashboard_url
properties addon assignment settings binding credentials

Table 26: Installed service object attribute mapping: cloudControl & Cloud Foundry

On Heroku, all config-vars have to be obtained before those key-value pairs can be selected
that belong to the installed service. Whereas general services are defined as addon-service,
installed services are just known to be an addon. As of now, OpenShift does not yet fully
support or use plans for their cartridges.

3 Design 42

Heroku OpenShift
Attribute

Platform
Object Field Object Field

id see Table 18
created_at see Table 18
updated_at see Table 18
active_plan addon plan/id - static
web_url addon web_url 7

properties config-vars name is in addon/config_vars 3

Table 27: Installed service object attribute mapping: Heroku & OpenShift

3.4.2 API Operation Mapping

In the previous sections, all API operations, their parameters as well as the API’s response
objects were introduced. Extending those definitions, this section discloses the operations’
mapping. The mappings describe all operations that are required to be executed on the
platforms to achieve one of the abstraction layer’s actions. All operation mappings are
defined in Table 33, which can be found in Appendix A. By means of simplifying the mapping
rules, additional operations that can be executed for validation, e.g., of the given request
parameters or the current application state, are not included in the mappings. All shown
operations must be executed in the given order and by obeying the noted conditions.

The mapping of the available services as well as their associated service plans can be achieved
on all four platforms. On Heroku and Cloud Foundry the operations can be forwarded so that
only the returned objects must be processed. By adding the inline-relations-depth=1
query to requests on Cloud Foundry, nested elements of the first level will be embedded in
the response object, which saves one additional request. OpenShift and cloudControl do not
allow to retrieve specific services or service plans, but they can only be extracted from the
corresponding collection.

Concerning the retrieval of all or specific available deployment regions, mappings are only
required for Heroku and OpenShift as Cloud Foundry and cloudControl do not offer a choice
of the deployment region. The mappings are both straightforward and do not require any
special operations. However, as there is no operation to retrieve a specific region object on
Heroku and OpenShift, the implementation should always load the list and only process the
region objects needed to build the response. On OpenShift it must also be regarded that
the retrieved region has to be declared as active, which is denoted in the allow_selection
field.

Next, all mappings concerning the application object and its operations are presented. Ap-
plications can be retrieved and listed on every of the four platforms. Still, loaded applications
on cloudControl must be merged with the used deployment, which act as more or less as
separate applications and shall default to nucleus if the application was created with the
abstraction layer. Also when loading the application list, all gathered application objects
must be joined with the corresponding deployment object. When creating an application on
cloudControl, a runtime, the application name and ’git’ as repository type must be speci-
fied. An initial deployment must always be created to guarantee the expected functionality
on cloudControl, whereby its name shall default to nucleus. Furthermore, the environment
variables feature, which is part of the core functionalities on the other three platforms, must
be added explicitly via the config.free add-on. As the config.free add-on can only be added
with at least one initial value, a Boolean variable named nucleus-initialized is provided and
gets removed immediately again to achieve the desired clean state. Cloud Foundry requests
the identifier of the user’s space to create an application object. Therefore, this ID must

3 Design 43

be gathered before firing the request to create the application. Next, it is also necessary to
assign the default route to the application, which corresponds to the default web_url as it is
offered by most platforms. The default route can either be identified from the list of all public
routes, for instance if there is only one public route, or can be provided as a fixed value in the
abstraction layer’s configuration that is then assigned to the persisted endpoint object. For
Heroku, no additional application mappings are required, only the chosen runtime must be
applied in a second request if it is not natively offered by Heroku. OpenShift requires three
requests to create an application object that is compatible to Nucleus. In the first request,
the user’s space must be identified, whereby a user always has only one space. With the ID
of this space, the application can be created. The third request is needed to disable the auto
deployment upon Git requests and keep at least two of the previous deployments, allowing
the application to remain in the deployed state. Not doing so would cause OpenShift not
to fit the generic lifecycle. Updating an application cannot be achieved on cloudControl and
OpenShift, wherefore there are no mappings required. On Heroku, custom buildpacks must
be regarded identically as when creating the application. No special operation mappings
are required on Cloud Foundry. Deleting the application object must be concluded with
the deletion of the application object itself on all four platforms. Regarding cloudControl,
all deployments must be deleted before the application deletion will be accepted. If dealing
with a Cloud Foundry application, the established default domain must be deleted first to
prevent orphaned routes.

Application data deployment requires similar operations on cloudControl, Heroku, and Open-
Shift. At first the URL of the Git repository and the user’s account name must be retrieved.
Thereupon, the Git repository shall be cloned and the user’s uploaded files get extracted
into the repository’s working directory. With the commit and push commands the Git in-
teraction is finished, as this automatically executes the deployment process on Heroku. On
cloudControl and OpenShift, the build process must be triggered manually. The version pa-
rameter of minus one that is used with cloudControl thereby refers to the HEAD of the Git
repository that shall be used for the build. Nevertheless, the build shall only be executed if
the application has already been started, otherwise the called build would immediately start
the application and violate the generic lifecycle. Forcing a clean build on OpenShift prevents
issues with dependencies and the chosen runtime cartridge. Opposed to the other three plat-
forms, Cloud Foundry does not natively support the deployment via Git repositories, even
if some providers, for instance Stackato and IBM Bluemix, enhanced their endpoints with
this feature. The data can be deployed by embedding the zipped data archive in a multipart
request. By specifying the resources parameter as empty squared brackets, no data may be
reused from previous builds.

The rebuild operation requires the same HTTP requests to be executed if using cloudControl,
Heroku or OpenShift. On all three platforms, the only noticeable difference compared to the
deployment is that instead of extracting the uploaded data into the repository, a marker file
is modified so that a new Git commit can be created and pushed. Cloud Foundry provides
a native restage operation which can be called.

To download previously uploaded application data, Cloud Foundry also provides an opera-
tion which either returns the data embedded in the response or contains an URL redirection
pointing to the location where the file can be found. If using one of the Git enabled plat-
forms, only the repository’s URL must be retrieved, whereupon the repository can be cloned,
compressed, and finally returned with the response.

3 Design 44

Lifecycle operations are generally not supported by cloudControl. However, to initially start
an application, the build must be executed using the data of the HEAD repository. Horizon-
tal scaling can be achieved by setting the number of desired instances in the min_boxes field
of a deployment update request. Cloud Foundry applies the state and number of instance of
an application if either one was requested while updating the object itself. Heroku can be
started and stopped by triggering the maintenance mode of the application. However, the
maintenance mode does not stop background workers, hence they must be stopped manually
in order to achieve a proper stopped state. Likewise, if resuming the application, the workers
must also be started again. Currently, there is no mechanism to scale the workers to the
same level as before the stop. This issue could be resolved by memorizing the number of
active workers inside configuration variables in future versions. The scaling of application
instances works just as the worker management does, but refers to web instances instead.
Events are used on OpenShift to handle the state transitions and even scale the applica-
tion. Mapping efforts are needed mostly to calculate whether and how often the application
must be scaled-up or scaled-down to achieve the desired number of application instances.
Thereby, the user data is needed to analyze the maximum number of application instances
the user can deploy, whereas the application object reveals the number of currently deployed
application instances.

The operations for domain mappings can be used without adaptations on Heroku and Open-
Shift. On cloudControl not all essential information is contained in the returned alias collec-
tion, wherefore each of the list’s elements must be retrieved individually, before returning the
mapped response. In contrast to these three platforms, severe mapping efforts are required
on Cloud Foundry to handle domains in an equivalent manner. Cloud Foundry distinguishes
between private domains, which can be accessible to selected users or user groups, and
shared domains that are usually open to all users of the endpoint and also reflect the default
web_url. Domain routes, representing a subdomain of the private or shared domain, can be
assigned to an application. If retrieving already assigned domains, the route must be loaded
at first before combining it with the actual domain and returning the combined response.
Creating the domain requires multiple steps and starts by fetching all accessible private and
public domain objects. In case there is no domain matching the request’s parameters, a new
private domain shall be created. Next, all routes are loaded and analyzed as there is no
possibility to reliably check if domain names, respectively routes, are already taken. If the
route is not yet taken, it shall be created. Finally, the route, which is either the existing
or a newly created route, gets assigned to the application. If a domain should be removed
from a Cloud Foundry application, the route assignment is removed from the application.
Thereafter, a check is performed if the route is still used in other applications. If not, it
shall be removed to prevent orphaned domain and route junks. The domain is currently not
tested for further usage, but could theoretically also be removed if it is of type private and
not referred to anymore.

Installed services on Heroku and OpenShift require no operation mapping when fetching
objects. On cloudControl, all assigned add-ons must be loaded, combined with the separately
retrieved add-on assignment object and finally be enriched with the information of the general
add-on description. The add-on assignment object as well as the general add-on object
are necessary to populate the response object, as described in Table 26. To gather the
service assignment, the currently active plan must be known as it is a path parameter of
the expected URL. Therefore, all available add-ons must be loaded, too. Mapping the
operations to retrieve the installed services on Cloud Foundry, one must load the service
bindings, whereby the nested elements of the next level shall be included in the response.

3 Design 45

To retrieve a specific service binding, the object’s ID is needed and in consequence all the
service’s plans must be loaded, too. Benefiting from the usage of globally unique identifiers,
the combination of the service’s plans and all service bindings of the application reveals the
searched binding. Except for Cloud Foundry, services can be modified with only one request
on all platforms. Installing a service on Cloud Foundry requires to create a new instance
of the service and bind this instance to the application. To update an installed service, the
binding is needed and the same logic as when retrieving an installed service applies. When
removing a service from the application, the binding has to be identified, then it must be
removed from the application and finally the service instance must be deleted, too.

Environment variables on OpenShift are treated as discrete objects, just as specified in the
Nucleus API. However, the remaining three platforms all regard the variables as key value
pairs and therefore they cannot be retrieved individually. Instead, the list of all variables
must be loaded and the desired variable must be extracted to build the response of the
abstraction layer. When applying environment variables on Cloud Foundry, one must provide
the complete set of the environment variables, meaning also currently applied variables must
be included to make sure they do not get deleted. The forced parameter on cloudControl is
used to always apply variable values and internally reuse the same operation to create and
update variable values.

Accessing the log files is the most diverse part of the Nucleus API. cloudControl does not
offer the available log files in its API, but to receive the entries of a known log one can fire an
HTTP request. Likewise, the same URL path can be used to tail the log, but then requires
a timestamp that specifies the earliest date of the log messages that shall be included in
the response. Cloud Foundry offers an operation to access the file system of the deployed
application, which sometimes contains log files. Files being retrieved via this operation
must be combined with the statically defined logs that are provided by loggregator, the
logging system of Cloud Foundry. Logs of the loggregator can be retrieved via normal HTTP
requests, but in order to tail the logs a web socket based communication must be established.
The web socket then automatically pushes new log entries once they are available on the
loggregator. All messages received from the loggregator are binary files that were serialized
with Google’s Protocol Buffer48 technology and must be deserialized before their content can
be processed. Heroku’s log list is completely static. All logs can be accessed upon requesting
a valid log session, which then returns the URL at which the files can be accessed. If the
session is opened with tailing enabled, the returned response is a chunked HTTP stream that
remains open for as long as possible and periodically pushes new log entries. To access the
log files on OpenShift, one needs to SSH into an application instance and directly retrieve
the application log files from a directory inside the application artifacts. The download and
download_all operations of the logging operations group do not require mappings on any of
the supported platforms. The logic to provide those operations can be maintained within
the API by using a combination of the previously specified log operations.

3.4.3 API Request Mapping

The operation mappings of the previous parts of this chapter already show how to translate
the Nucleus API operations to the vendor’s API and the way in which response objects
48Google Protocol Buffers. URL: https : / / developers . google . com / protocol - buffers/ (Retrieved:
June 25, 2015).

https://developers.google.com/protocol-buffers/

3 Design 46

can be build properly. Nonetheless, the presentation of the HTTP request headers against
the platforms is still missing to conclude the definitions. Headers are not only essential to
enable the authentication against the endpoint, but also define the utilized API version of
the platform and its expected response format.

In Section 2.2 of the approach, the chosen vendors and their API authentication methods
were initially introduced. All requests that must be executed to obtain an API token, which
is essential to execute further requests, are now presented in Table 28.

As OpenShift relies on HTTP Basic authentication and does not provide any token based ac-
cess, there are no requests required in advance to executing further operations. cloudControl
provides an API token once the credentials were posted with HTTP Basic authentication
to the /token URL path. A dedicated token refresh is not offered, but a new token can be
obtained by repeating the initial acquisition. Cloud Foundry based platforms do not have a
common URL path at which the tokens can be obtained. However, the authenticator’s URL
path is included in the general endpoint information. The request that has to be posted
towards the gathered URL path must define the grant_type and include the credentials.
If the token should be refreshed, the grant_type must be set to refresh_token. Heroku
is known to provide OAuth 2 support as recommended authentication approach. The API
tokens can thereby be received when the OAuth client was manually registered with the
platform. Although this would also be realizable by submitting the already known API
token to the Nucleus API, it conflicts with a consistent approach that can be used on all
four platforms. Therefore, the prototype is not going to use the OAuth 2 authentication but
rather rely on Heroku’s API token acquisition that expects the credentials to be sent to the
/login URL. This approach is also used by the Ruby implementation of the Heroku CLI.
New tokens can be requested by repeating the default authentication request.

Operation cloudControl Cloud Foundry Heroku

acquire API
token

POST /token
Header:

•Authorization =
’Basic {username:password, base64 encoded’

GET /v2/info
POST {info/authorization_endpoint}/
oauth/token?grant_type=password&
username={username}&password={password}

POST /login?
username={username}&
password={password}

refresh API
token

acquire API token GET /v2/info
POST {info/authorization_endpoint}/
oauth/token?grant_type=refresh_token&
refresh_token={access/refresh_token}

acquire API token

LEGEND

Font Style bold + italic : Use other operation
{in curly braces} : request variable
{italic in curly braces} : variable with static or previous response related value

Table 28: Authentication operation mapping

Utilizing the acquired API token, the HTTP request headers of Table 29 must be used for
every request against the determined endpoint. On all platforms, the exchanged content
type is expected to equal JavaScript Object Notation (JSON). All platforms expect the
authentication information to be present in the Authorization header. Cloud Foundry
additionally requires a Basic property, which must be set to ’Y2Y6’ in order to make the
token based API authentication work. Both values, token_type and access_token are
included in the response when asking for the API token. Heroku and OpenShift both require
an additional Accept header for all requests. As in the definition of the Nucleus API, it
determines which API version has to be used. Requests without the API version are either
rejected or would use the latest version, which could generate errors as soon as an API
change on the platform renders the abstraction layer’s adapter incompatible.

3 Design 47

Platform Header
cloudControl •Content-Type = ’application/json’

•Authorization = ’cc_auth_token="{api_token}"’

Cloud Foundry •Basic = ’Y2Y6’
•Content-Type = ’application/json’
•Authorization = ’{token_type} {access_token}’

Heroku •Accept = ’application/vnd.heroku+json; version=3’
•Content-Type = ’application/json’
•Authorization = ’Bearer {api_token}’

OpenShift •Accept = ’application/json; version=1.7’
•Content-Type = ’application/json’
•Authorization = ’Basic {username:password, base64 encoded’

Table 29: Authenticated platform requests and the essential header fields

3.5 API Design Challenges

Recalling the disclosed API mappings, most challenges that were experienced while specifying
the Nucleus API could be resolved in the end. However, some fields of the API objects could
not be filled with proper values of the platform’s response objects. Missing timestamps could
only be copied from related objects, but are expected to present similar values. As most of
the problematic mappings provide only meta-data, the requests do not have to fail if any of
those fields can’t be mapped at all.

Cloud Foundry failed to provide standardized definitions of the service plan costs and is
therefore the only object mapping which could not be harmonized in the adapters. Custom
mappings would be possible if the provider is known, but for most providers this information
must be obtained first. Even then this approach would remain unstable and likely to break
if anything is changed or additional providers appear with their new custom schema.

One of the first challenges was the completely inconsistent definition of the deployment and
build process. Whereas some differences, for instance different deployment methods, were
expected, it was surprising that the deployment is sometimes only serving as mechanism to
upload data, whereas others understand deployment to also act as a build process. Heroku
and Cloud Foundry both automatically trigger a build process once the data is uploaded,
cloudControl and OpenShift expect a separate API request to invoke the actual build process.
By expecting that the deploy operation performs all necessary steps, ranging from data
upload, over the build process up to deploying the finalized build, all inconsistencies could
be harmonized.

Some challenges arose solely on behalf of cloudControl. Environment variables and domains
are both not part of a default application on cloudControl, instead they have to be provided
via services or add-ons, as cloudControl refers to them. To circumvent any conflicts, both
add-ons are now added to the application immediately upon its creation. Both add-ons are
free of charge, wherefore there are also no known downsides of this procedure.

Moreover, at first glance cloudControl seemed to violate the generic lifecycle of PaaS ap-
plications. Start and stop operations are not offered by the platform. Once an application
has been deployed, it cannot be taken offline except by deleting the application or its data.
However, a slight adaption of the lifecycle made all platforms compatible and provides more
flexibility for further platforms. As depicted in the final definition of the lifecycle (see Fig-
ure 4), the build process is shown as first action after the start operation of the application
instance. If builds are already part of the deployment process, as with Cloud Foundry and
Heroku, the application state will not change if the build fails and the start will only fail on
errors unrelated to an already succeeded build. The cloudControl adapter now somewhat

3 Design 48

supports the start operation and thereby checks if the application has already been build
and started. Nothing needs to be done if the application is started, otherwise the build will
be triggered so that the application instance gets started.

Application instances are another aspect that is regarded differently by the platforms. At
first, it was planned to allow the adjustment of application instances within a range from zero
up to the limitation of the endpoint. This intention was however troubled by cloudControl,
Cloud Foundry and OpenShift, which all require the presence of at least one application
instance. Despite the limitation of Heroku that allows the removal of all instances, the
scaling operation was finally designed to accept only positive integer inputs, which must
be greater or equal than one. We do not expect any major side effects of this decision as
the application can still be stopped to perform maintenance work or save the costs of the
remaining application instance.

4 Prototype 49

4 Prototype

Chapter 4 introduces the final prototype, explains its architecture, and presents important
implementation details. The utilized technologies are summed up in Section 4.1 and the final
structure of the project is explained in Section 4.2. All steps and files related to the initial-
ization and loading of the code parts are demonstrated in Section 4.3. In Section 4.4, the
extensible API route setup is introduced, whereupon Section 4.5 discusses the adapters and
their hierarchy. Section 4.6 illuminates the handling of Git repositories with its challenges
and the appropriate solutions, before Section 4.7 presents the custom errors and a general
approach to exception handling. All actions that are involved in an API request are high-
lighted in Section 4.8, before Section 4.9 reveals the test setup of the prototype. Information
about the documentation of the API are presented in Section 4.10. Finally, Section 4.11
presents instructions how to use the current prototype, adapt the default configuration and
develop new adapters.

4.1 Technology

After an analysis of the API design, all related platforms and their provided libraries, it
was decided that the Nucleus prototype is going to be implemented in Ruby49. Ruby is an
open-source, dynamic, object-oriented and general-purpose programming language that is
available for all major operating systems. It is quite popular in the area of PaaS applications
and also many PaaS vendors utilized Ruby to implement their CLIs or other libraries that
connect to their API. Another reason in favor of Ruby was the multitude of projects that
are available to build, document, and test RESTful APIs.

The programming language Ruby is very often connected to the Ruby on Rails50 web frame-
work. One reasonable choice to build the API would have been the Rails::API51 project,
which has only recently been merged into Rails itself. However, as the projected API does
not require most of Rails’ core features, a more lightweight Rack52-based infrastructure was
chosen instead. Rack is a modular and extensible interface, wrapping HTTP requests and
responses into a single method call and is implemented by a variety of different applica-
tion servers. After a careful consideration of all requested features, the Grape53 project was
chosen to build the API.

Grape is a micro-framework that allows to build RESTful web applications that can be run
independently on top of Rack, as well as on top of existing web application frameworks as
Rails or Sinatra54. With its extensions grape-entity55 and grape-swagger56, it provides a
feature rich development environment to develop the Nucleus API in an object-oriented and
49Ruby. URL: https://www.ruby-lang.org/en/ (Retrieved: June 25, 2015).
50Ruby on Rails. URL: http://rubyonrails.org/ (Retrieved: June 25, 2015).
51Rails::API. URL: https://github.com/rails-api/rails-api (Retrieved: June 25, 2015).
52Rack: a Ruby Webserver Interface. URL: http://rack.github.io/ (Retrieved: June 25, 2015).
53 grape: An opinionated micro-framework for creating REST-like APIs in Ruby. URL: https://github.

com/intridea/grape (Retrieved: June 25, 2015).
54Sinatra. URL: http://www.sinatrarb.com/ (Retrieved: June 25, 2015).
55 grape-entity: A simple Facade to use with your models and API, sitting on top of an object model. URL:

https://github.com/intridea/grape-entity (Retrieved: June 25, 2015).
56 grape-swagger: Swagger compliant documentation of your grape API. URL: https://github.com/tim-

vandecasteele/grape-swagger (Retrieved: June 25, 2015).

https://www.ruby-lang.org/en/
http://rubyonrails.org/
https://github.com/rails-api/rails-api
http://rack.github.io/
https://github.com/intridea/grape
https://github.com/intridea/grape
http://www.sinatrarb.com/
https://github.com/intridea/grape-entity
https://github.com/tim-vandecasteele/grape-swagger
https://github.com/tim-vandecasteele/grape-swagger

4 Prototype 50

properly documented manner. Grape supports multiple message formats out of the box,
including XML and JSON.

In analogy with the supported platforms, the Nucleus API shall utilize JSON as message
format for both, request and response messages. With the use of the Hypertext Application
Language (HAL)57, a simple JSON based format to enable hyperlinks between API resources,
the API matches the ideas behind the HATEOAS principle of RESTful applications. HAL
facilitates not only the exploration and use of an API, but also leverages automatic processing
of the resulting JSON documents. Clients can easily navigate the API by following the links
of a resource, which are embedded in the _links property. The name of a link is described
by the key of the entry within the _links object, whereas the actual URL of the link has
to be the value of the nested href property. Listing 7 shows the Application object as an
exemplary resource to utilize HAL in the JSON notation and to establish the resource links.
The object shows six links, the self reference, the link to the parent resource, in this case
the endpoint itself, as well as the links to the child resource collections.

Listing 7: HAL example of Nucleus’ application object using JSON
1 {
2 "id": "e0946358-8ab4-45c5-ab5a-9ee67e937318",
3 "created_at": "2015-03-19T18:11:52Z",
4 "updated_at": "2015-05-09T10:56:08Z",
5 "name": "nucleus",
6 "active_runtime": "Ruby",
7 "runtimes": [],
8 "region": "eu",
9 "autoscaled": false,

10 "instances": 0,
11 "web_url": "https://nucleus.herokuapp.com/",
12 "state": "deployed",
13 "release_version": "08c6965f-3627-408f-9538-845d8ec79520",
14 "_links": {
15 "self": { "href": "http://localhost:9292/api/endpoints/heroku/applications/

e0946358-8ab4-45c5-ab5a-9ee67e937318" },
16 "parent": { "href": "http://localhost:9292/api/endpoints/heroku" },
17 "logs": { "href": "http://localhost:9292/api/endpoints/heroku/applications/

e0946358-8ab4-45c5-ab5a-9ee67e937318/logs" },
18 "vars": { "href": "http://localhost:9292/api/endpoints/heroku/applications/

e0946358-8ab4-45c5-ab5a-9ee67e937318/vars" },
19 "domains": { "href": "http://localhost:9292/api/endpoints/heroku/applications/

e0946358-8ab4-45c5-ab5a-9ee67e937318/domains" },
20 "services": { "href": "http://localhost:9292/api/endpoints/heroku/applications/

e0946358-8ab4-45c5-ab5a-9ee67e937318/services" }
21 }
22 }

For building the prototype, additional features are required besides those provided by the
Grape library. Ruby uses so called gems to provide and distribute self-contained programs
and libraries. All supplementary Ruby gems that are used within the prototype are listed
in Table 30, including a short description why they are needed.

57HAL - Hypertext Application Language. URL: http://stateless.co/hal_specification.html (Re-
trieved: June 3, 2015).

http://stateless.co/hal_specification.html

4 Prototype 51

Gem Version Usage description
configatron >= 4.5 Used as global configuration
em-http-request >= 1.1 Required for log tailing against HTTP endpoints
excon >= 0.44 Used as main HTTP / REST client
faye-websocket >= 0.9 Required for log tailing against websockets
git >= 1.2 Application data handling
grape >= 0.12 Used to build the API
grape-entity >= 0.4.5 Grape extension used to build the API in an object-oriented manner
grape-swagger >= 0.10.1 Grape extension used to document the API
kwalify >= 0.7 Used to import the vendor, provider and adapter setup from a configuration file

with schema validation
lmdb >= 0.4 DB store, used on Windows systems
logger >= 1.2 Logging
mime-types >= 2.5 Application archive handling, detect unsupported uploads
moneta >= 0.8 Generic interface for DB store implementations
oj >= 2.12 Used for JSON / Hash conversion and test cassette serialization. Oj is considerably

faster than most JSON libs
protobuf >= 3.4 Required for Cloud Foundry log messages
rack-ssl-enforcer >= 0.2.8 To make sure HTTPS is used instead of HTTP
rest-client >= 1.8 HTTP client library to use for multipart requests
rack-stream = 0.0.5 Used to build a streaming API for the log tail action
request_store >= 1.1 Save certain information for the current request, e.g., the already loaded adapter
require_all >= 1.3 Application setup, require all parts of the application
rubyzip >= 1.1 Application data handling
sshkey >= 1.6.1 Application data handling when using git deployment
thin >= 1.6 The ONLY supported rack server at the moment

Table 30: Nucleus’ gem dependencies

The dependencies, which are maintained by Bundler58, can also be found in the .gemspec file.
The prototype can also be made available as Ruby gem itself, so that other developers can
utilize the abstraction layer’s communication features without having to setup a complete
web server that runs the API. This setup allows future CLIs of the abstraction layer to
use the gem, rather than having to connect to a web API. With this final change of the
application architecture and its packaging, the abstraction layer’s architecture that was
previously defined in Figure 1 can be improved and visualized as shown in Figure 7. The
visualization now considers the different clients of the abstraction layer, namely either Ruby
programs or HTTP clients that connect to a deployed version of the API.

4.2 Project Structure

The internal structure of the project is shaped mostly by the guidelines of Bundler59. The
structure of the root directory is visualized in Figure 8. Currently, the deliverable is one
project that actually contains two projects, the abstraction layer and the web API, which
are yet to be separated into two dedicated projects. The separation of Nucleus into a core
and an API gem would enhance the separation of concerns so that users only have to use
the project they really need.

Binary startup files in the bin folder are part of the API and allow to start the web server
with a variety of configuration options, e.g., to run the server as a daemon. Configuration
files of Nucleus are placed in the config directory. It contains the adapter configurations,
which would be part of the core feature set, as well as the general configuration that
could be found in both projects, once separated. Yard’s generated HTML documentation
of the Ruby modules and classes is located in the doc directory. Most important, the lib
58Bundler: managing gem dependencies. URL: http://bundler.io/ (Retrieved: June 25, 2015).
59How to package your Ruby code in a gem. URL: http://guides.rubygems.org/make-your-own-gem/
(Retrieved: June 28, 2015).

http://bundler.io/
http://guides.rubygems.org/make-your-own-gem/

4 Prototype 52

Vendor,
Provider &
Endpoint

repository

App #nApp #1

API

Public API

HTTP clients

CLI swagger generated clients

Manage Vendor, Provider and Endpoint entities

Nucleus API

Ruby clients

Application(s)

API Git

Application(s)

API Git

Application(s)

API Git

Authentication

Adapter matching

Adapter fundamentals

Heroku Openshift V2 Cloud Foundry V2 cloudControl

Platform as a Service abstraction layer

Figure 7: Final architecture of the Nucleus project

directory contains the actual code and application logic. It is divided into two subdirectories,
nucleus that contains the actual abstraction layer and nucleus_api that includes only
the RESTful web API. nucleus includes further subdirectories, namely adapters for the
platform adapters, core to include relevant features and models, ext with all monkey
patched classed and modules, as well as the scripts directory containing all actions that
are invoked when starting or stopping the abstraction layer. The directories of the Nucleus
API are: api to include all routes and the entities, ext to contain the monkey patched
classes and modules, import with the logic to load available adapters and to detect the
available API versions, persistence to manage the Data Access Objects (DAOs) and object
models, rack_middleware to cover all extensions to the rack server and finally scripts
with the loading, initialization, and shutdown processes. public contains the HTML, CSS,
and JS files of the interactive swagger-ui60 API documentation and should therefore be
moved to the API gem. All Kwalify61 compatible YAML schemata reside in the schemas
directory. The schemata are used to validate the required methods inside the adapters and
their configuration files. The directory would belong to the core after a separation. spec
contains all files regarding the RSpec tests, as well as the sample application containers, a
SSH key to be used during the tests and also the remote endpoint interaction recordings.
Currently, it contains tests for both projects. Rake tasks to generate evaluation tables can
be found in the tasks directory. Further markdown files to document the project and its
usage reside in the wiki folder.
60Swagger UI. URL: http://swagger.io/swagger-ui/ (Retrieved: June 28, 2015).
61Kwalify: A parser, schema validator and data binding tool for YAML and JSON. URL: http://www.

kuwata-lab.com/kwalify/ (Retrieved: June 28, 2015).

http://swagger.io/swagger-ui/
http://www.kuwata-lab.com/kwalify/
http://www.kuwata-lab.com/kwalify/

4 Prototype 53

/
bin..Binary files and startup scripts
config...Adapter and application configuration files
doc..Generated code documentation
lib...Application source code

nucleus...Core gem part, focus on the abstraction layer
adapters...Files related to the adapter implementation
core...Common features and model classes
ext ..Patches
scripts...Initialization and shutdown scripts

nucleus_api..API gem part
api...API routes and entities
ext ..Patches
import..Load API versions and adapters from the configuration
persistence ...Persistence management and DAOs
rack_middleware ..Rack middleware extensions
scripts..Initialization and shutdown scripts of the API

public ... Swagger UI files
schemas..YAML file schemata
spec..RSpec tests
tasks..Rake tasks
wiki...Additional documentation files

Figure 8: Nucleus’ file system project structure

4.3 Initialization

The Nucleus API requires multiple actions to be executed before the web server is ready to
serve user requests. In general, the application is started via the provided nucleus binary
file or the commonly used rackup command, which both require the config.ru file of the
API project as input parameter. The config.ru file of the Nucleus API is shown in Code
Listing 8. It reveals the API’s initialization order, in which at first the global configuration
is made available, after which the application is loaded and initialized, before finally the rack
based middleware is applied and the application can be run.

Listing 8: Nucleus’ config.ru Rack server startup file
1 # Setup bundler compatibility, according to: http://bundler.io/v1.9/rationale .html
2 require 'rubygems'
3 require 'bundler/setup'
4 # Load configuration
5 require 'nucleus/scripts/setup_config'
6 # Load application
7 require 'nucleus_api/scripts/load_api'
8 # Initialize the application
9 require 'nucleus_api/scripts/ initialize_api '

10 # Initialize the Rack environment
11 require 'nucleus_api/scripts/rack_application'
12 # finally start the application
13 run Nucleus::API::Rack.app

Whereas the load_api.rb file only loads the dependencies of the application, a closer look
at the initialize_api.rb file, which is shown in Code Listing 9, points out that the API
initialization calls a multiple other scripts. First, the shutdown hooks are registered so that
the created SSH files are deleted and the database can be wiped, as illustrated in Code
Listing 10. By using the at_exit command, it is made sure that the block is executed
immediately before the application is shut down.

Listing 9: Nucleus API initialization script
1 begin
2 # Shutdown hook to cleanup the API
3 require 'nucleus_api/scripts/shutdown_api'
4

4 Prototype 54

5 # include the configuration of the project to overwrite the home dir config
6 project_dir_config = ' ../../../ config/nucleus_config.rb'
7 if File . exist?(File .expand_path(project_dir_config, File.dirname(__FILE__)))
8 puts "Applying configuration from: #{File.expand_path(project_dir_config, File.dirname(

__FILE__))}"
9 require_relative project_dir_config

10 end
11

12 # now load the configuration values
13 require 'nucleus/scripts/ initialize_config_defaults '
14

15 require 'nucleus_api/scripts/initialize_api_customizations'
16

17 require 'nucleus_api/scripts/initialize_daos '
18

19 # finalize so that the configuration is locked
20 require 'nucleus/scripts/ finalize '
21 rescue Nucleus::StartupError => e
22 log . error "Nucleus API startup failed (#{e.exit_code}), exit now"
23 exit e.exit_code
24 end

Listing 10: Nucleus shutdown hook
1 # Implement API shutdown actions, tidy up the DB
2 at_exit do
3 puts '−−−', ''
4 puts 'Cleaning up the API...'
5

6 # delete the SSHHandler generated files
7 puts ' ... delete SSH files ... '
8 nucleus_config.ssh.handler.cleanup if nucleus_config.key?(:ssh) && nucleus_config.ssh.key?(:handler

)
9

10 if !nucleus_config.db.key?(:delete_on_shutdown) || nucleus_config.db.delete_on_shutdown
11 if File . exist?(nucleus_config.db.path) && File.directory?(nucleus_config.db.path)
12 FileUtils .rm_rf(nucleus_config.db.path)
13 end
14 puts ' ... DB store successfully deleted ' unless File. exist?(nucleus_config.db.path)
15 end
16 puts ' ... done!'
17 end

Next, the project’s configuration is applied in the initialize_api.rb file. As there are
multiple options how to specify Nucleus’ configuration, details are presented in Section 4.11.2.
The config initialization makes sure a reasonable default value is applied to all configuration
options. API customizations are adaptions of the default Grape Middleware, in this case
the customized HTTP Basic authentication strategy. Initializing the DAOs populates the
database with all available vendor, provider, and endpoint entities. To populate the entities,
the information is taken from the adapter configuration files. More information about these
configuration files can be found in Section 4.5.3, which explains how to create new platform
adapters. With the finalization script, we ensure that the configuration is locked and the
initialization phase is completed.

4.4 API Route Setup

Every Grape API route has to inherit the Grape::API class. The root node of Nucleus’
API is shown in Listing 11. Grape helpers are a convenient way to provide commonly used

4 Prototype 55

functionality to all API routes. All declarations inside the root class will be available to all
sub routes and mounted API classes. The first before block will therefore be executed in
advance to every route and the rescue_from block applies to all routes of the Nucleus API,
handling the conversion of internal errors to the defined error response object. The mount
command in line 31 includes the actual operations of the abstraction layer’s first version into
the API. In case another version V2 is developed and shares most of its functionality with
V1, the second version could be mounted before the current version. All operations that
would not be available in V2 could then automatically fallback to the definitions of V1.
The RootAPI’s concluding block, route :any, ’*path’, catches all requests that did not
match the definitions of the API’s routes. In consequence, the HTTP error 404 would be
returned to indicate no matching resource could be found.

Listing 11: Nucleus API root
1 module Nucleus
2 module API
3 class RootAPI < Grape::API
4 helpers AdapterHelper
5 helpers AuthHelper
6 helpers DaoHelper
7 helpers ErrorHelper
8 helpers FormProcessingHelper
9 helpers LinkGeneratorHelper

10 helpers LogHelper
11 helpers SharedParamsHelper
12

13 content_type :json, 'application/json'
14 default_format :json
15 default_error_formatter :json
16 format :json
17

18 before do
19 # env is not injected in every method, but the instance var can be
20 @env = env
21 end
22

23 # rescue ALL errors and comply to the error schema
24 rescue_from :all do |e|
25 # [...] HERE WOULD BE THE ERROR HANDLING LOGIC. PLEASE HAVE A LOOK AT

THE SOURCE CODE FOR MORE INFORMATION
26

27 # send response via Rack (Grape doesn't support error! or entities via :with in rescue)
28 :: Rack::Response.new([API::Models::Error.new(entity).to_json], entity [: status], entity [:

headers]) . finish
29 end
30

31 mount Nucleus::API::V1::Base
32

33 route :any, '∗path' do
34 if env['nucleus. invalid .accept.header']
35 to_error(ErrorMessages::INVALID_ACCEPT_HEADER, 'The Accept header does not

match to any route. Please make sure the vendor is set to \'nucleus\' and check the
version!')

36 else
37 to_error(ErrorMessages::NOT_FOUND, 'Please refer to the API documentation and

compare your call with the available resources and actions.')
38 end
39 end
40 end
41 end
42 end

4 Prototype 56

Mounted inside the Nucleus::API::V1::Base class, the Auth API class includes all op-
erations of the API which target foreign platforms and thus require the user’s creden-
tials. The authentication block at the top of the class, as shown in Listing 14, protects
all routes that are mounted below the block so that they can only be called with valid
credentials. The credentials are thereby verified as described in Section 3.4.3 by using the
Nucleus::Adapters::AuthClient class, which acts similar to an interface to the individual
clients, for instance the OAuth2AuthClient.

Listing 12: Nucleus API authentication protected routes
1 module Nucleus
2 module API
3 module V1
4 class Auth < Grape::API
5 # ... http_basic authentication ...
6

7 ### Mount all protected routes below
8 mount Nucleus::API::V1::Calls
9 mount Nucleus::API::V1::Regions

10 mount Nucleus::API::V1::Applications
11 mount Nucleus::API::V1::ApplicationData
12 mount Nucleus::API::V1::ApplicationDomains
13 mount Nucleus::API::V1::ApplicationEnvVars
14 mount Nucleus::API::V1::ApplicationLifecycle
15 mount Nucleus::API::V1::ApplicationLogs
16 mount Nucleus::API::V1::ApplicationLogsTail
17 mount Nucleus::API::V1::ApplicationScaling
18 mount Nucleus::API::V1::ApplicationServices
19 mount Nucleus::API::V1::Services
20 mount Nucleus::API::V1::ServicePlans
21 end
22 end
23 end
24 end

To illustrate the detailed implementation of some API operations, Listing 13 shows an ex-
cerpt of the code blocks that build the operations to manage the application object. The
initial resource opens a block that dictates at which URL path all the included opera-
tions will be available, which is below endpoints/{endpoint_id}/applications for this
example. An operation’s definition consists of three parts, the description to serve the API
documentation, the parameters, and the actual implementation. In the documentation, the
success and failure methods describe which objects shall be returned if the operation suc-
ceeds or fails. The GET method to retrieve an application entity, which is shown in lines 8 to
17, takes the parameters of the application_context helper context. All defined resources
always follow the definitions of the API operations as introduced in Section 3.3. Whereas GET
can directly call the adapter implementation of the operation, the POST verb that is shown in
lines 19 to 38 first needs to include the vendor_specific parameters. Except for the more
complex application logging, all definitions of the API operation routes are comparable to
those shown in this example. All calls against the adapter transparently resolve the adapter
that matches the targeted endpoint. More information about this process is explained in
Section 4.5.1.

4 Prototype 57

Listing 13: Nucleus API application routes definition excerpt
1 module Nucleus
2 module API
3 module V1
4 class Applications < Grape::API
5 helpers SharedParamsHelper
6

7 resource 'endpoints/:endpoint_id/applications', desc: 'Endpoint\'s applications ' , swagger: {
name: 'applications ' , nested: false } do

8 desc 'Get an applications that is registered at the endpoint' do
9 success Models::Application

10 failure [[200, 'Application retrieved ' , Models::Application]]. concat ErrorResponses.
standard_responses

11 end
12 params do
13 use :application_context
14 end
15 get ' :application_id' do
16 present adapter.application(params[:application_id]), with: Models::Application
17 end
18

19 desc 'Create an applications to be registered at the endpoint' do
20 success Models::Application
21 failure [[201, 'Application created' , Models::Application]]. concat ErrorResponses.

standard_responses
22 end
23 params do
24 use :endpoint_id
25 # require the keys of the application in the json object ' application '
26 requires : application , type: Hash do
27 # name is required, but we must use :all to get the presence validator . Name is selected

via :using
28 requires : all , using: Nucleus::API::Models::Application.documentation.slice(:name)
29 requires :runtimes, Nucleus::API::Models::Application.documentation[:runtimes].merge(

type: Array[String])
30 # everything else is optional
31 optional : all , using: Nucleus::API::Models::Application.documentation.slice(:region, :

autoscaled)
32 end
33 end
34 post '/' do
35 application_params = declared(params, include_missing: false)[:application]
36 application_params = application_params.merge(params[:application][:vendor_specific]) if

params[:application].key?(:vendor_specific)
37 present adapter.create_application(application_params), with: Models::Application
38 end
39 end
40 end
41 end
42 end
43 end

4.5 Adapters

Concerning the realization of the application architecture as visualized in Figure 7, it was
decided to benefit from class inheritance and introduce an extensible adapter hierarchy. The
resulting hierarchy is shown in Figure 9 and introduces the BaseAdapter and Stub classes.
All adapter fundamentals, for instance authentication caching, common error handling, na-
tive endpoint calls, a universal HTTP rest-client, as well as access to even more helper classes

4 Prototype 58

are provided by the BaseAdapter. In contrast, a Stub does not contain any functionality
and is rather used to serve as an interface or skeleton for one specific API version. The Stub
has to implement all methods of the API version it represents and always return an error
to indicate methods that have not been implemented yet. Finally, vendor specific adapters
extend the Stub class and provide the actual implementations. Adapters can introduce their
own private helper methods, but they have to overwrite the Stub’s public API methods in
order to make the operations work. With this setup, all unsupported or not yet implemented
operations of the the adapter will automatically return the Stub’s error and hence guarantee
to match the specified error schema.

all API operations of version V1

V1::Stub

+ cache(String, AuthClient)
+ cache?(String): Boolean
+ cached(String): AuthClient
+ cache_key(String, String): String
+ endpoint_call(Symbol,String,Hash): Object
+ headers: Hash
+ fail_with(Symbol)
+ <<HttpClient methods>>
+ <<HttpTailClient methods>>

+ endpoint_url: URL
+ auth_objects_cache: Hash

BaseAdapter

+ all Stub operations
- helper methods

OpenshiftV2

+ all Stub operations
- helper methods

CloudFoundryV2

+ all Stub operations
- helper methods

cloudControl

+ all Stub operations
- helper methods

Heroku

Figure 9: Adapter hierarchy class diagram

Additional classes which can be used by the adapters and are not made available by the
BaseAdapter can be seen in Figure 10. The ArchiveConverter can be utilized to convert
archives, for instance from zip to tar.gz, whereas the FileManager handles read and write
access to the server’s file system. Handling Git repositories is the responsibility of the
GitDeployer, which does not only provide methods to download or deploy files, but also to
trigger a new build of the application by changing a hidden marker file. With this setup,
vendor specific adapters must not always come up with proprietary solutions, instead they
can rely on these common resources.

+ convert(String,String): StringIO

ArchiveConverter

+ load_file(String): StringIO
+ save_file_from_data(String, Data)

FileManager

+ trigger_build
+ download(String): StringIO
+ deploy(File, String)

GitDeployer

Figure 10: Archive, Git, and file system helper classes

4 Prototype 59

4.5.1 Adapter Matching

Adapter matching describes how to resolve the proper adapter for a particular request. All
actions that are needed to resolve the adapter can be found in Listing 14. The listing shows
the authentication section of the Nucleus API, which is automatically invoked by all requests
that target a protected URL path behind an endpoint. If the request contains credentials,
the first step is to load the targeted endpoint object. Using the adapter index object that
was introduced in Section 3 with the entities that were generated during the initialization
phase, the class of the required adapter can be identified with just one additional database
query. Finally, the adapter class is instantiated as shown in line 13 with all additional
information given by the index entry. Moreover, the authentication layer of Nucleus does
also support re-authentication in case of expired API access tokens. Therefore, the adapter is
patched by the AdapterAuthenticationInductor, as it is also done when using an adapter
via the Ruby gem. By saving the resolved and patched adapter in the request_cache, all
further operations of this request can resolve the instantiated adapter at any time via the
request_cache. The approach of the adapter matching is exclusive to the use of the Nucleus
API. When acquiring an adapter via the AdapterResolver of the Ruby gem, the adapter
must always be specified by the user via the vendor’s name.

Listing 14: Endpoint authentication and adapter matching code sample
1 # defines the authentication for all subsequently mounted routes
2 http_basic(realm: 'Nucleus API Authorization @ %{endpoint_id}',
3 realm_replace: [: endpoint_id]) do |username, password, params, env|
4 # never allow empty username or password
5 return false if username.blank? || password.blank?
6

7 # find a matching endpoint
8 endpoint = load_endpoint(params)
9 # resolve the required adapter

10 index_entry = adapter_dao.get params[:endpoint_id]
11 # use the already secured (https) URL of the index_entry
12 adapter = index_entry.adapter_clazz.new(index_entry.url, endpoint.app_domain, !endpoint.trust)
13

14 # patch the adapter so that calls are wrapped and expect valid authentication
15 AdapterAuthenticationInductor.patch(adapter, env)
16

17 # save info for the current request , no need to retrieve multiple times
18 request_cache.set("#{env['HTTP_X_REQUEST_ID']}.adapter", adapter)
19 request_cache.set("#{env['HTTP_X_REQUEST_ID']}.endpoint", endpoint)
20

21 cache_key = adapter.cache_key(username, password)
22 # THREAD HACK to work with deferred tasks (log tailing), cache auth key
23 request_cache.set("#{env['HTTP_X_REQUEST_ID']}.auth.cache.key", cache_key)
24

25 unless adapter.cache?(cache_key)
26 # no auth object available , perform authentication first
27 auth_object = adapter.auth_client
28 # throws an error if the authentication failed
29 auth_object.authenticate(username, password)
30 # cache the auth object so it does not have to be retrieved per request
31 adapter.cache(cache_key, auth_object)
32 end
33 # auth passed
34 true
35 end

4 Prototype 60

4.5.2 Adapter Compatibility

Initially, the API operations of our abstraction layer were introduced in Chapter 2. Later
on, the previous design chapter explained the object and operation mappings that must
be obeyed in detail. Nevertheless, Table 3 also highlighted incompatibilities which cannot
be fixed by mappings as basic operations are missing on some platforms. Focusing on
these issues, Table 31 visualizes the compatibility of the final vendor adapters against the
definitions of the adapter stub and therefore the abstraction layer. The auto-generated table
does only reveal whether an operation is somewhat supported, but does not consider if the
operation is only partially compatible, as for instance the service plan mapping on Cloud
Foundry. Even so, it provides a good indication where problems might occur.

Adapter compatibility clo
udC

ont
rol

Clo
ud

Fou
ndr

y v
2

He
rok

u
Op

enS
hift

v2

auth_client 3 3 3 3

regions 3 3 3 3

region 3 3 3 3

applications 3 3 3 3

application 3 3 3 3

create_application 3 3 3 3

update_application 7 3 3 7

delete_application 3 3 3 3

domains 3 3 3 3

domain 3 3 3 3

create_domain 3 3 3 3

delete_domain 3 3 3 3

env_vars 3 3 3 3

env_var 3 3 3 3

create_env_var 3 3 3 3

update_env_var 3 3 3 3

delete_env_var 3 3 3 3

start 3 3 3 3

stop 7 3 3 3

restart 7 3 3 3

deploy 3 3 3 3

rebuild 3 3 3 3

download 3 3 3 3

scale 3 3 3 3

log? 3 3 3 3

logs 3 3 3 3

log_entries 3 3 3 3

tail 3 3 3 7

services 3 3 3 3

service 3 3 3 3

service_plans 3 3 3 3

service_plan 3 3 3 3

installed_services 3 3 3 3

installed_service 3 3 3 3

add_service 3 3 3 3

change_service 3 3 3 7

remove_service 3 3 3 3

Supported methods 34 37 37 34
Supported degree 91.9 % 100 % 100 % 91.9 %

Table 31: List of API operations that are supported by Nucleus per vendor

Heroku and Cloud Foundry both support all 37 defined operations of the adapter stub,
whereas OpenShift currently only supports 34 of the operations. However, the missing tail
log operation could be added to this count as it can be realized, but has not been imple-
mented in this prototype. In summary, only the application update and service change are

4 Prototype 61

not supported. On OpenShift, the service change is not needed as long as service plans
are not actively used by the platform. The immutability of application objects, which pre-
vents application updates, is one core principle conflicting with Heroku and Cloud Foundry.
cloudControl shares OpenShift’s idea of immutable applications, on the one hand to prevent
runtime changes, on the other hand as the name of an application is also used as identi-
fier and therefore must not be changed. The remaining two unsupported operations are all
caused by cloudControl’s divergent lifecycle understanding. Once the application has been
deployed and started, there is no way it can be stopped without undeploying the application
data or deleting the services and their content.

Despite minor conflicts, the compatibility table shows that the most relevant operations
could be brought in line. All remaining issues are inflicted by differences in the general
understanding of an application’s lifecycle and the chosen system architecture.

4.5.3 Adapter Implementation

PaaS vendors are all represented by a unique adapter to orchestrate the communication
between Nucleus and the endpoints of the vendor’s platform. The implementation of those
adapters can be separated into a few steps, which are going to be introduced in the later of
this section.

Adapter Configuration File

Each adapter has its own .yml configuration file that is located in the config/adapters
directory of the Nucleus project. The configuration file must be named exactly like the
vendor’s identifier, so that the file for the current implementation of OpenShift would be
called config/adapters/openshift_v2.yml . Its default content can be seen in Listing 15.
The configuration file describes all known objects, starting with the vendor on the first level
of the YAML file. For a vendor, there can then be an arbitrary number of providers, which
themselves can possess any number of endpoints. Endpoints must be provided with the url
of the endpoint’s API and can also take some optional attributes, such as the app_domain
and trust, which were already introduced along with the API operations in Chapter 3.3.1.

Listing 15: OpenShift V2 adapter configuration file in YAML syntax
1 −−−

2 name: "OpenShift 2"
3 id: "openshift_v2"
4 providers:
5 −

6 name: "OpenShift Online"
7 id: "openshift-online"
8 endpoints:
9 −

10 name: "OpenShift Online"
11 id: "openshift-online"
12 url: "openshift.redhat.com/broker/rest"

The objects will be made available at the API via the IDs given in the adapter configuration
files. Different platform versions shall therefore be distinguished by appending _v{version}

4 Prototype 62

to the ID, as shown with OpenShift version 2 in this example. Provider and endpoint objects
can also be modified at runtime, whereas the vendor objects that represent the adapter
implementation are write-protected and can only be changed via the configuration files.

Adapter Implementation Files

Before starting the implementation of an adapter, it must be decided for which version of
the abstraction layer the platform’s adapter shall be developed. All adapter files then have
to be created in a directory matching the following path:
app/adapters/{API_VERSION}/{vendor_id}/{vendor_id}.rb
It is very important to make sure the vendor_id is equal to the identifier that was assigned
to the vendor in the adapter configuration file, as otherwise the adapter cannot be resolved
at runtime. The module and class naming, as it is shown in Listing 16 must also be regarded
carefully. Each adapter must inherit from the Stub adapter matching the chosen API version.

Listing 16: Adapter class and module namespace
1 module Nucleus
2 module Adapters
3 module {API_VERSION}
4 class {VENDOR_ID} < Stub
5 # implemented methods
6 end
7 end
8 end
9 end

To enhance the project’s code quality and modularity, as well as to strengthen the separation
of concerns, the adapter should be divided into multiple smaller modules. For instance,
Cloud Foundry’s adapter is distributed to 14 files. As soon as the adapter is defined with its
configuration file, inherits the Stub and is placed in the correct location, it should already
be available in the API. However, all calls would fail and return an error with status code
501 to indicate the missing implementation.

To implement the adapter’s logic, one requires the expected behavior of the adapter methods,
including information about the method parameters and the expected response object. This
documentation can not only be taken from the Stub adapter, but is in most cases even
identical to the API operation definitions of Section 3.3. Regarding the authentication
method, Nucleus already offers four different authentication approaches which all could be
used in new adapters. If the targeted platform does not directly support a certain operation,
it is legit to apply minor workarounds by means of achieving the goal. Workarounds that
were applied in the included version of the prototype are, e.g., the domain management on
Cloud Foundry or the lifecycle handling on Heroku. If the operation cannot be supported
at all, as for instance cloudControl does not support to stop applications, the method shall
not be present in the adapter so that the Stub class can provide a common error response.
More aspects regarding the implementation of adapter tests can be found in the upcoming
Section 4.9.

4 Prototype 63

4.6 Git Deployment and Repository Authentication

Git is used within Nucleus to manage application data on cloudControl, Cloud Foundry, and
Heroku. Especially the deploy, download and even the rebuild methods of those platforms
depend on Git interactions.

In the operations mapping Section 3.4.2, it was described which Git actions need to be
invoked by the operations. The Ruby gem Git62 facilitates the execution of Git commands
inside Ruby code. All Git actions are bundled in the Nucleus::Adapters::GitDeployer and
Nucleus::Adapters::GitRepoAnalyzer classes, which can be called directly from within
the platform adapters. To illustrate this procedure, Listing 17 contains the download method
of Heroku’s adapter. Whereas the first lines only perform assertions and fetch the required
information, the task itself starts at line seven with registering the SSH key which is required
to allow the access to the Git repository. Thereafter, the GitDeployer gets instantiated and
the download is invoked.

Listing 17: Heroku’s download adapter method
1 def download(application_id, compression_format)
2 app = get("/apps/#{application_id}").body
3 if application_state(app) == Enums::ApplicationStates::CREATED
4 fail Errors :: SemanticAdapterRequestError, 'Application must be deployed before data can be

downloaded'
5 end
6 repo_name = "nucleus.app.repo.heroku.download.#{application_id}.#{SecureRandom.uuid}"
7 with_ssh_key do
8 GitDeployer.new(repo_name, app[:git_url], nil).download(compression_format, true)
9 end

10 end

Triggering a rebuild via Git is achieved by manipulating a custom marker file called
nucleus-rebuild-trigger. Code Listing 18 visualizes this part of the GitDeployer.

Listing 18: Trigger rebuild method of the GitDeployer
1 def trigger_build
2 push_repository_changes do |repo_dir|
3 build_trigger_file = File. join(repo_dir, 'nucleus−rebuild−trigger ')
4 current_md5 = File.exist?(build_trigger_file) ? Digest ::MD5.file(build_trigger_file) .hexdigest :

nil
5 data = StringIO.new("Nucleus rebuild, triggered at #{Time.now}")
6 FileManager.save_file_from_data(build_trigger_file, data, false, current_md5)
7 end
8 nil
9 end

Despite the simplicity of the previously shown steps, the largest challenge for all Git actions
is to gain access to the application’s Git repository. Usually, the Git commands utilize a SSH
certificate based authentication and attempt to gain access with all private keys available
on the system. Nevertheless, assuming that some certificates are available on the platform,
especially ones without a passphrase protection, using them would make the whole process
quite fragile. Nucleus would always have to validate the certificates in terms of their presence,
their type, and passphrase protection. Only then, they could be used at all. In consequence,
it was decided that the SSH key that will be used shall either be provided by the user via
the application’s configuration, or shall be generated during the application’s startup phase.
62Git Library for Ruby. URL: https://github.com/schacon/ruby-git (Retrieved: July 2, 2015).

https://github.com/schacon/ruby-git

4 Prototype 64

Those steps are performed within the Nucleus::SSHHandler. Most important, Git must
also be told to use the chosen private key for its authentication attempts. This can be
achieved via SSH agents wrapping the actual Git commands and are applied by the Git
gem. However, the commands must be available as script file on the local disk, wherefore
the code that is shown in Listing 19 writes the file to a temporary location of the active
file system. Both scripts, a UNIX and Windows version, point to the private key, accept all
foreign hosts, disable the host check which would require manual confirmation and finally
execute the original Git commands with all its parameters.

Listing 19: SSH agent creation of the SSHHandler to use a custom private key for Git
1 def create_agent
2 # use uuid so that more than one instance can run at the same time
3 @agent_file = File.expand_path(File.join(Dir.tmpdir, 'nucleus' , 'ssh ' , 'agent' , SecureRandom.uuid

))
4 # windows requires the extension, otherwise git complains that it can't spawn such a file
5 @agent_file = "#{@agent_file}.bat" if OS.windows?
6 FileUtils .mkdir_p(File.dirname(@agent_file))
7

8 if OS.unix?
9 File .write(@agent_file, "ssh −i #{@key_file} −o UserKnownHostsFile=/dev/null −o

StrictHostKeyChecking=no $∗")
10 FileUtils .chmod(0700, @agent_file)
11 else
12 File .write(@agent_file, "@echo off\r\nssh −i #{@key_file} −o UserKnownHostsFile=NUL "\
13 '−o StrictHostKeyChecking=no %∗')
14 end
15 end

4.7 Exception Handling

All exceptions which could not be resolved internally are finally returned to the user with
the error message format as it was described in Section 3.2.3. Errors are processed within
the rescue_from :all block of the RootAPI class. This error handling logic is presented
in Listing 20 and shows that all errors are also passed to Nucleus’ logging system so that
issues can be detected and analyzed. Grape itself is also eligible to raise errors, for instance
if the parameter or header validation failed. If an exception shall be rescued that was not
expected, the HTTP 500 error is returned and a prioritized error logging statement shall be
made. Errors of Grape, as well as errors which are expected to be raised by the adapters of
Nucleus, are converted to API conform response message. Three types of exceptions have to
be distinguished within Nucleus, which are all introduced in the remainder of this section.

Listing 20: Nucleus error handling
1 rescue_from :all do |e|
2 env['api.endpoint']. log .debug e.to_s
3 e.backtrace.each { | line | env['api.endpoint']. log .debug line }
4

5 if e.is_a?(Errors ::ApiError) || e.is_a?(Nucleus::Errors ::AdapterError)
6 entity = env['api.endpoint']. build_error_entity(e.ui_error, e.message)
7 elsif e.is_a?(Grape::Exceptions::ValidationErrors) || e.is_a?(Grape::Exceptions::

InvalidMessageBody)
8 entity = env['api.endpoint']. build_error_entity(ErrorMessages::BAD_REQUEST_VALIDATION,

e.message)
9 elsif e.is_a?(Grape::Exceptions::InvalidAcceptHeader)

10 entity = env['api.endpoint']. build_error_entity(ErrorMessages::INVALID_ACCEPT_HEADER, e
.message, e.headers)

4 Prototype 65

11 env['nucleus. invalid .accept.header'] = true
12 else
13 entity = env['api.endpoint']. build_error_entity(ErrorMessages::RESCUED, "Rescued from #{e.

class.name}. Could you please report this bug?")
14 env['api.endpoint']. log . error("API error via Rack: #{entity[:status]} − #{e.message} (#{e.class

}) in #{e.backtrace.first}:")
15 end
16

17 # send response via Rack, since Grape does not support error! or entities via :with in the rescue
block

18 :: Rack::Response.new([Models::Error.new(entity).to_json], entity [: status], entity [: headers]) . finish
19 end

Startup Errors

Startup errors are internal errors that appear during the initialization of the application
and usually prevent a successful start. Currently, there are two specific startup errors, but
sometimes the Ruby StandardError is raised, too.

AmbiguousAdapterError raised if more than one adapter file was found for
an adapter configuration. File naming must be checked!

StartupError prevents the start of the Nucleus API. For instance caused by
bad configuration, e.g., if the specified SSH certificates could not be found.

API Errors

An ApiError is caused by the user’s request, e.g., if a parameter’s content is invalid. API
errors are only raised by Nucleus. An instantiated error contains all information that is
required to build the JSON response message within the rescue_from block of the RootAPI.

ApplicationArchiveError HTTP status code 400, raised if the provided data
could not be extracted, e.g., if it is corrupted.

ResourceNotFoundError 404, is raised if a vendor, provider or endpoint re-
source could not be found in the database.

Adapter Errors

An AdapterError is caused by errors raised within Nucleus or the endpoint’s response.
Likewise to an API error, it contains all required information to build the formatted error
response message.

AdapterRequestError HTTP status code 400, raised if the request is invalid,
usually due to missing or semantically invalid parameters that could not be
processed by the syntactical validation of Grape.

EndpointAuthenticationError 401, originally raised by the endpoint if the
authentication attempt failed, e.g., due to bad credentials.

4 Prototype 66

AdapterResourceNotFoundError 404, is raised if one of the referenced ob-
jects could not be found on the endpoint.

SemanticAdapterRequestError 422, is raised if not all conditions are met to
invoke the operation. Can originate from Nucleus or the endpoints.

PlatformSpecificSemanticError 422, is raised if platform specific conditions
are violated, for instance if cloudControl was not yet provided with a billing
address that is required for some operations. Can originate from Nucleus
and the endpoints.

UnknownAdapterCallError 500, is raised by Nucleus only. Hints at imple-
mentation errors, e.g., when an adapter is outdated.

AdapterMissingImplementationError 501, raised by Nucleus if an opera-
tion has not (yet) been implemented for the current adapter.

PlatformUnavailableError 503, raised by endpoints if they are temporarily
not available, for instance during maintenance.

PlatformTimeoutError 504, raised by endpoints if they experienced an inter-
nal timeout on asynchronous operations.

4 Prototype 67

4.8 Authenticated API Requests

Summarizing the previous sections, this section demonstrates the internal workflow that is
taken when authenticated endpoint requests are executed. The complete process is visualized
in the activity diagram of Figure 11.

ad API Request

Vendor specific adapterAPI

Execute an API request that requires authentication

Cached
authentication

header?

Operation +
adapter call

Load adapter

Update
authentication

Format
response

Retry
adapter call

Format error
response

[loaded]

[yes]

[no]

[successful]

[error]

[authentication error]

[error]

[successful]

[authentication failed][successful]

Authenticate

[authentication failed][successful]

Figure 11: Activity diagram showing the steps of authenticated API requests

As previously explained in Section 4.5.1, the first step of the processing is to load the adapter
that is capable of handling the targeted endpoint. Thereafter, it is checked if an API token

4 Prototype 68

has already been retrieved and did not expire yet. This process is also shown in Section 4.5.1,
especially in Listing 14. If the cache does not contain a valid token, the authentication is
attempted by using the adapter’s authentication client. Assuming that the authentication
fails, a formatted error response is returned. When the authentication succeeds, the process
is resumed as if the credentials were available before. If a token is already stored in the cache
or a prior authentication succeeded, the next step is to execute the API operation with its
adapter call. Unless it fails, the formatted response is returned and the request finished.
API and Adapter errors are formatted as an error response and finish the request as well.
However, if an authentication error is returned by the adapter call, for instance if the token
has been revoked, Nucleus attempts to acquire a new token. When this authentication
update is successful, the adapter call is retried and formatted according to whether the
call fails or succeeds. Otherwise, the error response is formatted to indicate the expired
credentials.

4.9 Automated Tests

In statically typed programming languages, for instance C++ or Java, the compiler will
already find a good share of errors as it acts as first evaluation instance. However, in
dynamic languages as Ruby, there is no compiler to perform these checks. Under these
circumstances, a high test coverage with unit and integration tests is even more important.

Nucleus features three distinct types of tests. In addition to the commonly used unit and
integration tests, Nucleus’ adapter tests can be regarded as complete system test. Adapter
tests call the API of Nucleus, which then calls the PaaS endpoint to perform the necessary
tasks, before the response is generated and can be evaluated against the tests expectations.
Within the spec folder of the project, all RSpec files, helper classes and required binary
files of the application’s tests can be found. All files of the three test types are available in
dedicated subdirectories. Files directly residing inside the spec folder are required by all
tests, e.g., the general spec helper which initializes the application and includes dependencies
to calculate the test coverage.

A list of all additional dependencies needed to make the tests work is presented in Listing 32.
Airborne is used to facilitate the calls against the running API, which therefore simulates
the functionality of a rack server. Rubocop performs static checks and validates the written
code against a rule set of best practices. It prevents changes from being committed if any of
the checked classes violates these rules. VCR63 is the most important gem in regards to the
adapter tests. It allows to record HTTP interactions of external systems which can also be
replayed and thus enable dramatically faster, deterministic, and accurate tests. Within the
test of Nucleus, VCR records and replays all interactions with the platforms’ APIs, so that
the test duration is reduced by more than an hour, but even more important, it allows to
run the adapter tests in Continuous Integration (CI) systems without having to provide the
endpoint user credentials publicly.

63VCR documentation. URL: http://www.relishapp.com/vcr/vcr/docs (Retrieved: July 6, 2015).

http://www.relishapp.com/vcr/vcr/docs

4 Prototype 69

Gem Usage description
airborne RSpec driven API testing framework
factory_girl Factory to generate test objects
faker Generate fake data
memfs Fake file system
rspec-wait Wait for conditions in RSpec
rubocop Ruby code style checking tool to enforce the community-driven Ruby Style Guide
vcr Record and replay your test suite’s HTTP interactions
webmock Stubbing HTTP requests and expectations on HTTP requests

Table 32: Gem dependencies for development and tests

4.9.1 Adapter Tests

Adapter tests are complete system tests that include communication with third party sys-
tems, in our case requests for the execution of operations on the targeted endpoint. Within
the adapter tests, most of the abstraction layer’s behavior is tested, so that the received feed-
back is a good measure to indicate the compatibility of the platforms and evaluate which
parts are not yet properly implemented.

Listing 28 in Appendix B presents the basic template of a file used to describe all tests
that should be run for an adapter. This adapter test definition should be placed beneath
spec/adapter/v1/{VENDOR_ID}/{VENDOR_ID}_spec.rb to be included in the automated
test runs. If a certain functionality should not be provided by a platform, those tests can
be marked as unsupported in the leading before :all block. The before do |example|
block takes care of skipping unsupported features and loading a new adapter instance for
each test. Thereafter, the actual tests are included. All tests are written and included as
shared examples, a feature of RSpec which allows to not only place the tests into dedicated
files, but also enables their reuse. The most extend of the adapter verifications is included
via the compliant adapter with valid credentials shared example. It simulates the
lifecycle of two applications, creates, modifies, collects, and deletes various entities to cover
all API operations at least once.

The sequence diagram in Figure 12 illustrates the test execution process of a single adapter
test. Commencing the test, the environment is initialized via all included test helpers, which
takes care of loading the dependencies and their configuration. In the next step, a VCR
cassette is inserted that will include the set of HTTP interactions of a test run. If the
test execution shall be recorded, the recording is started, otherwise the secret data of the
previous recording is made available to the test execution. Once the recording is setup, the
actual RSpec test is executed together with its validations. Regardless of the recording mode
and the test result, the cassette gets ejected at the end of the test, before RSpec returns
the test result to indicate if the validations passed or failed. However, if the recording was
enabled, three more steps are required before ejecting the cassette. The first step is to
stop the recorder. If and only if there were no errors and failed validations during the test
execution, the recorded data is anonymized to strip private data, e.g., credentials, before
finally persisting the data so that it is available for test replays. Any error or test violation
prevents the recorded cassette from getting persisted.

4 Prototype 70

ad Adapter test execution

Execute an adapter test

recording?

Setup test
environment

execute test

[loaded]

[no]

eject cassette

[test passed][test failed]

stop recording

anonymize
cassette

insert secret
data

[validation failed]

recording?

start recording

[yes]

[validation passed]

[yes]

[no]

insert cassette

persist cassette

[test finished]

[test passed]

[test violated]

Figure 12: Sequence diagram showing the test execution process

In order to validate whether Nucleus is working properly and can be used for the manage-
ment and deployment operations, we identified a need for a demo application which can
be deployed on all supported platforms during the adapter tests without requiring further
technical adaptations. After a brief analysis of the supported vendors and their runtime lan-
guages, we decided to use Node.js as runtime language. Node.js is not only offered by all of
the chosen vendors, but most PaaS vendors in general. The application itself is called Word

4 Prototype 71

Finder64. Word Finder is a minimalistic open-source application that allows to find words
containing specific characters. It has only minimal technical requirements and does not re-
quire a database connection or any other third party service. Manual attempts to deploy
the application on the chosen platforms succeeded without any issues in most instances and
only the deployment on OpenShift failed. A comparison of OpenShift’s Node.js cartridge
documentation65 and the source code of the Word Finder application immediately revealed
the problem, which is highlighted in Code Listing 21.

Listing 21: Wordfinder sample application, original IP and port configuration
1 app.listen (process.env.PORT || config.port) ;

During the startup process, the application will not be bound to a specific IP address, but
only to a port that can be specified via the PORT environment variable or the application’s
configuration. Based on this information, the startup process was modified to take advantage
of the OpenShift specific environment variables and fallback to commonly used environment
variables, the application’s configuration or a default value. This solution can be seen in
Code Listing 22.

Listing 22: Wordfinder sample application, fixed IP and port configuration
1 port = process.env.OPENSHIFT_NODEJS_PORT || process.env.VCAP_APP_PORT ||

process.env.PORT || config.port;
2 ip = process.env.OPENSHIFT_NODEJS_IP || "0.0.0.0";
3 app.listen (port, ip) ;

With these modifications the application can be deployed on all four platforms during the
automated adapter tests.

4.10 Documentation

Nucleus’ extensive documentation is divided into three major groups: basic comments in
the code, the API documentation, and the generated code documentation. Besides those
documents, additional and rather informal information regarding the general application
setup and usage can also be found in the markdown files of the developed project.

The generated HTML documentation of the implementation code is based on the YARD66

gem. Currently, nearly 70% of the modules, classes, constants and methods are properly
documented. The documentation can be generated via the bundle exec rake doc com-
mand.

A vital part of fostering API adoption is to provide a useful and easy to understand doc-
umentation. With the help of the grape-swagger67 gem, an extension to the Grape API,
additional API resources that describe the complete Nucleus API in version 1.2 of the stan-
dardized swagger68 specification are made available. The specification is auto-generated at
64Word Finder - Node.js application. URL: https://github.com/amirrajan/word-finder/ (Retrieved:
April 29, 2015).

65OpenShift - Node.js Overview. URL: https://developers.openshift.com/en/node-js-environment-
variables.html (Retrieved: April 30, 2015).

66YARD: A Ruby documentation generation tool. URL: http://yardoc.org/ (Retrieved: July 9, 2015).
67 grape-swagger: Swagger compliant documentation of your grape API. URL: https://github.com/tim-

vandecasteele/grape-swagger (Retrieved: June 25, 2015).
68Swagger API representation. URL: http://swagger.io (Retrieved: June 28, 2015).

https://github.com/amirrajan/word-finder/
https://developers.openshift.com/en/node-js-environment-variables.html
https://developers.openshift.com/en/node-js-environment-variables.html
http://yardoc.org/
https://github.com/tim-vandecasteele/grape-swagger
https://github.com/tim-vandecasteele/grape-swagger
http://swagger.io

4 Prototype 72

the start of the application and therefore only available at runtime. Swagger allows to create
an interactive documentation, generate API clients for many programming languages and
also enables the discoverability of the API. The interactive documentation is a HTML and
JS application known as Swagger UI69, which consumes the JSON resources that describe
the actual API. As the Swagger UI project is embedded in the project and gets automat-
ically hosted by the rack server, it can be opened in any browser at the /docs URL path.
Screenshots that hint at the capabilities of the chosen solution can be found in Appendix
C. Figure 13 shows the available operation groups. All operation groups can be expanded
to show the operation entries similar to Figure 14. The operations can also be expanded,
showing their full specification as presented in Figure 16 for a GET request and Figure 15 for
a PATCH request. Request parameters, response objects and all allowed response status codes
are explained in detail within the specification. When using the interactive possibilities of
the UI, parameters that are needed to execute a request can be provided in the available
input fields.

4.11 Usage

Nucleus can be installed and used without any major system requirements. The following
sections highlight the most important aspects which have to be regarded. Section 4.11.1
presents prerequisites before installing Nucleus, whereas the available configuration options
are explained in Section 4.11.2. The usage of the Nucleus gem is introduced in Section 4.11.3.
Nucleus’ language independent RESTful API is presented in the concluding Section 4.11.4.

4.11.1 System Requirements

Most important, Nucleus requires a minimum Ruby version of 1.9.3. Nucleus is developed
and actively tested with the default MRI Ruby interpreter. Furthermore, Nucleus requires
a few programs to be available on the system’s PATH, namely git and ssh. Whereas it
is sufficient for programs to be installed on UNIX via the system’s package manager, for
instance apt-get, additional steps must be considered when using Microsoft Windows. On
Windows, both executable files should be located in the Git/bin installation directory of
msysGit. Nucleus is verified to work with msysGit and its included version of OpenSSH.
Any other alternatives, e.g., PuTTY, are untested. More operating system specific issues
and all known fixes are listed in the project’s README file.

4.11.2 Configuration

Nucleus allows a number of options to be changed inside configuration files. Moreover, there
are three possibilities how a configuration file can be made available to Nucleus. All three
options can also contain only partial information.

The first and least significant option is to provide a system wide configuration file in the
home directory of the user account that invokes the Nucleus gem or the API. If avail-
able, the file is loaded from nucleus/nucleus_config.rb on Windows systems, and
69Swagger UI. URL: http://swagger.io/swagger-ui/ (Retrieved: June 28, 2015).

http://swagger.io/swagger-ui/

4 Prototype 73

.nucleus/nucleus_config.rb on all UNIX systems, relative to the home directory. Over-
writing the system wide configuration, the Nucleus gem can be provided with its own config-
uration file. The nucleus_config.rb file must be placed in the config directory of the
gem. If the API is used, the third configuration option is to place the nucleus_config.rb
file in the config directory of the API, which then overwrites both previously introduced
configuration locations.

The default configuration file, in which all options are commented out, can be seen in the
Listing 23. Options one and two allow to change the logging severity level as well as the
directory into which the files shall be written. This allows, for instance, that the API can
be installed as system service and log to the /var/log/nucleus directory as expected by
most Linux systems. The next four options focus on the persistence of the public API enti-
ties. The path option allows to specify the location where files of the storage backend can
be written to. Combined with a delete_on_shutdown option which is set to false, the
API can easily be made persistent to make sure custom objects are retained even beyond
restarts. As discussed in Section 4.6, a private SSH key is needed to enable the applica-
tion data deployment via Git. The location of a personal SSH key can be configured by
the nucleus_config.ssh.custom_key property. The provided key must be created with
OpenSSH, use ssh-rsa and must not be protected with a passphrase. By default, a new key
will be created upon starting Nucleus.

Listing 23: Nucleus’ default configuration file
1 # [optional] The available levels are: FATAL, ERROR, WARN, INFO, DEBUG
2 # Defaults to: Logger::Severity ::WARN
3 # nucleus_config.logging. level = Logger::Severity ::WARN
4

5 # [optional] Logging directory
6 # Defaults to: File .expand_path(File.join(File.dirname(__FILE__), '..', 'log'))
7 # nucleus_config.logging.path = File.expand_path(File.join(File.dirname(__FILE__), '..', 'log'))
8

9 # [optional] Options to start the backend.
10 # See http://www.rubydoc.info/gems/moneta/Moneta/Adapters for valid options on the chosen adapter.
11 # Defaults to: {}
12 # nucleus_config.db.backend_options = {}
13

14 # [optional] Please specify the DB directory if you plan to use a file storage .
15 # Defaults to: a temporary directory.
16 # nucleus_config.db.path = '/Users/cmr/Documents/workspace−rubymine/nucleus/store/'
17

18 # [optional] If true, the DB will be deleted when the server is being closed .
19 # Defaults to: true
20 # nucleus_config.db.delete_on_shutdown = false
21

22 # [optional, requires 'nucleus_config.db.path '] If true, the DB will be initialized with default
values,

23 # which may partially override previously persisted entities .
24 # False keeps the changes that were applied during runtime.
25 # Defaults to: false
26 # nucleus_config.db.override = false
27

28 # [optional] Specify the location of a private key (ssh−rsa, OpenSSH) that shall be used for Git
actions.

29 # E.g. /home/myusername/.ssh/id_rsa
30 # If set to false , Nucleus will use its own private key (config/nucleus_git_key.pem) to authenticate

all Git actions.
31 # Defaults to: nil
32 # nucleus_config.ssh.custom_key = nil

4 Prototype 74

4.11.3 Ruby Gem

Nucleus can also be embedded in another application as Ruby gem. Listing 24 shows the
necessary steps. First, the dependency on the Nucleus gem should be added in the gemspec
or Gemfile of the project. It must then be installed, either via Bundler or the gem install
command. Step three is to require Nucleus in the application, which then automatically
triggers Nucleus’ internal initialization procedure.

Listing 24: Include the Nucleus gem in another Ruby application
1 # 1a) Add dependency in Gemfile
2 gem 'nucleus'
3

4 # 1b) Add dependency in gemspec
5 specification .add_runtime_dependency 'nucleus'
6

7 # 2a) Install the dependency via Bundler
8 $ bundle install
9

10 # 2b) Manually install the dependency
11 $ gem install nucleus
12

13 # 3) Require the gem in your application
14 require 'nucleus'

Once the gem is installed and required, its configuration can also be adapted from within the
new application. All values, which are explicitly described in Section 4.11.2, are accessible
via the global nucleus_config accessor. The Nucleus::VersionDetector.api_versions
method call makes it possible to obtain a list of all available versions of the abstraction
layer. After a version has been chosen, Listing 25 demonstrates how the gem can be used
to invoke further actions. The Nucleus::AdapterResolver must always be instantiated
with a valid version. As soon as the AdapterResolver is initialized, it provides access to
all adapters that are compatible with this version of the abstraction layer. Adapters can
then be loaded via its load method. The load method requires the name of the vendor, as
well as the URL of the API endpoint and the credentials that shall be used to authorize the
API requests. Optionally, it can also be specified to skip the assertion of SSL certificates or
provide a custom application domain. By default, the adapter will be populated with the
default configuration options that are defined in the vendor’s configuration for the selected
endpoint. However, if a custom installation is used, e.g., of OpenShift or Cloud Foundry,
the app_domain option should always be specified as the web_url links created by Nucleus
would otherwise be malformed. The methods which can be called on the adapter equal the
API’s operations to the most extend. Solely the log download methods are not available in
the adapters. All adapters offer a method to receive the application’s log entries instead.
The example in Listing 25 shows three sample method calls, which retrieve all available
regions of the endpoint, create and finally delete an application.

A complete list of the available methods can be obtained via the documentation of the
Nucleus::Adapters::V1::Stub adapter. Detailed information about the method’s param-
eters, including the declarations, which fields are required and those that are only optional,
can also be taken from the documentation of the RESTful API.

4 Prototype 75

Listing 25: Use the Nucleus gem in another Ruby application
1 available_versions = Nucleus::VersionDetector.api_versions
2 resolver = Nucleus::AdapterResolver.new('v1')
3 available_adapters = resolver.adapters
4 # −−> {"cloudcontrol"=>Nucleus::Adapters::V1::CloudControl, "cloud_foundry_v2"=>Nucleus::

Adapters::V1::CloudFoundryV2, "heroku"=>Nucleus::Adapters::V1::Heroku, "openshift_v2"=>
Nucleus::Adapters::V1::OpenShiftV2}

5

6 adapter = resolver.load('cloudcontrol ' , 'api.cloudcontrol .com', 'your_username', 'your_password')
7 # adapter = resolver.load('cloud_foundry_v2', 'api.example.org', 'your_username', 'your_password',

app_domain: 'apps.example.org', check_ssl: false)
8

9 # Show available regions
10 regions = adapter.regions
11 # Create our first application
12 app = adapter.create_application(region: regions [0]. id , name: 'myusersfirstapplication ' , runtimes: ['

nodejs'])
13 # And delete the application again ;−)
14 adapter.delete_application(app[:id])

4.11.4 Server

The server mode of Nucleus can be started in multiple ways. The most convenient and
preferred solution is to use the provided startup script, which is located at bin/nucleus
of the project. It comes with a variety of options, which can be seen in Listing 26. All
options can be categorized into three groups. The first group concerns the general web server
bindings, followed by options to use the API as daemon or background service. Group three
allows to enable SSL protection of the API and specify the key and certificate files.

Listing 26: Nucleus’ startup script
1 bin/nucleus −−help
2

3 Usage:
4 nucleus [options]
5

6 Options:
7 −r, −−hostname HOSTNAME Bind to HOST address (default: localhost)
8 −p, −−port PORT Use PORT (default: 9292)
9 −e, −−env ENV Environment (default: "development")

10 −t, −−timeout TIMEOUT Timeout for single request (default : 30)
11 −h, −−help
12

13 Daemon options:
14 −d, −−daemon Run the server as daemon in the background (default: false)
15 −u, −−user USER User to run daemon as. Use with −d (default: "nobody")
16 −g, −−group GROUP Group to run daemon as. Use with −d (default: "nobody")
17 −b, −−pid PID File to store PID (default: tmp/pids/thin.pid)
18 −l , −−logdir LOGDIR Directory for log files if run as daemon, defaults to {

current_directory}/log
19

20 SSL options:
21 −s, −−ssl Enable SSL (default: false , use with: ssl−key and ssl−cert)
22 −k, −−ssl−key KEY SSL key file to use (use with: ssl and ssl−cert)
23 −c, −−ssl−cert CERT SSL certificate file to use (use with: ssl and ssl−key)

All users are highly encouraged to only use HTTPS connections if the application is running
in production or can be accessed from outside of the local computer. This recommendation
is based on the fact that all passwords are passed via the HTTP basic authentication, which

4 Prototype 76

does only encode, but not encrypt the data, wherefore any third party could log and identify
the transmitted credentials. To enforce this policy, Nucleus will automatically redirect all
incoming plain HTTP connections to HTTPS connections if it is running in the production
environment. Additionally, the API can also be started by using the typical rackup command
as shown in Listing 27.

Listing 27: Rackup of the Nucleus API
1 rackup −s thin config .ru

By reason of technical dependencies on event based rack servers, Nucleus can currently only
run on the Thin70 web server. This dependency was introduced by the log tailing operations
and the rack-stream gem.

When running Nucleus as a Web service without a permanent database, all changes made
to the vendor, provider, and endpoint objects will be discarded once the application is
terminated. To prevent the data disposal and persist the data permanently, the functionality
can be enabled in the configuration, requiring the location where to store the data to be
specified.

70Thin: A fast and very simple Ruby web server. URL: http://code.macournoyer.com/thin/ (Retrieved:
June 29, 2015).

http://code.macournoyer.com/thin/

5 Evaluation 77

5 Evaluation

In this chapter, the created Platform as a Service abstraction layer is briefly evaluated against
its initial requirements and some selected use cases which are described in the literature.

With the help of Travis CI and the developed test suites, Nucleus is known to work with the
most recent Ruby versions. All tests were successfully executed against the Ruby interpreters
MRI 1.9.3, MRI 2.0.0, MRI 2.1 and MRI 2.2. Not only do the tests show the compatibility
with the major Ruby versions, the included adapter tests also simulate the complete lifecycle
of cloud applications. All deployed applications of the tests were accessible at the anticipated
URLs and generated valid logging entries. Some of the abstraction layer’s operations can
be seen as minor use cases on their own, e.g., the application data management and the
lifecycle handling.

Further aspects of cloud applications were also taken into account with a use case based
evaluation of the abstraction layer and its capabilities. In previous publications, some authors
already worked out sophisticated use cases to match the characteristics of PaaS applications.
Quite often the need to change the current vendor is mentioned. The user, being either
a developer or a company, wants to move an application from one platform to another.
Loutas et. al, while referring to the findings of the Cloud Computing Use Case Discussion
Group [Clo10], states that such a “semantic conflict can be resolved by the means of a
standardized management interface” [LKT11]. With the common object description and
the identical API for all supported vendors, a unique management interface is provided by
Nucleus. Additionally, it would be necessary that the application container is compatible
to the technical requirements of the chosen platform, which is however out of scope in
this work. Moreover, Nucleus does not yet offer operations for managing and transferring
application data, i.e., from databases, which shows that further work is required to pass
this holistic use case. According to Loutas et. al [LKT11], additional use cases referring
to the management interfaces of PaaS platforms are the application deployment on a PaaS
offering and PaaS systems interoperability. Even though the definition of the application
deployment use case illustrates the problem of differences in the management interfaces, it
mostly refers to technical issues that are related to the chosen database of the application
in its explanation. Assuming the use case is pointing at the management interface of the
platforms, Nucleus passes this use case as it harmonizes different operation naming with the
same functionality over all supported platforms. Hybrid clouds and the requested common
PaaS offering model are not offered by Nucleus. Nevertheless, the provided information, e.g.,
the available runtimes and their versions, are already processed to present a common object
model and therefore partially help to pass the use case’s requirements. The DMTF specified
that it must be possible for the user to increase or decrease the resources that are available
to an application so that it can serve more, respectively less requests [Dis10]. Whereas it
is currently not possible to increase the capacity of an application instance, the application
scaling operation allows to add or remove instances and therefore theoretically allows to
adjust the amount of requests that can be handled, too. Maiya et al. [MDYSM12] refer to
the foundations of the DMTF and name five use cases. Nucleus can fulfill the first three: the
deployment of a new application to the cloud, application scaling during peak demands, and
the deployment of a new version of the application. Use cases which cannot be achieved with
Nucleus are the configuration of application health monitoring and the notification about a
service condition or event. Generally, both use cases can be questioned to be realizable with
any of the chosen platforms due to missing features and operations.

5 Evaluation 78

At the beginning of this study, it was claimed that interoperability and portability of PaaS
can be improved with the creation of an abstraction layer. In summary, application portabil-
ity is enabled mostly with the common object model that applies to all supported platforms.
Hybrid Clouds, describing the deployment of an application to multiple platforms around
the globe, are facilitated by the fact that the application description does not have to be
changed if all vendors support the technical requirements. Most important, even though
an automated vendor change is not yet realizable, the effort that is needed when migrating
an application to another vendor is diminished. Nucleus also enhances the interoperability
of PaaS platforms and applications. The common interface and the application lifecycle
model that apply to all supported platforms allow that applications can easily interact and
be adjusted, for instance to handle shifting load scenarios. Tasks that are required for this
interaction are the scaling and lifecycle operations. Nucleus’ common object model thereby
allows applications on different platforms to be capable of semantically processing the infor-
mation.

Concerning the aspect of the demanded programming language independence, the created
JSON interface fully satisfies this requirement. One the one side, Swagger and its tools allow
the generation of clients in many languages, for instance Java, PHP, Python, Ruby, Swift
and many more71. On the other side, the independence is already demonstrated with the
interactive Swagger UI interface, from which the API can be used. The Swagger UI and
the extensive documentation contribute to a pleasant experience for developers that adopt
the abstraction layer. Nucleus’ extendability is provided by the modular structure with the
dedicated adapters for each supported platform and the possibility to host multiple API
versions in parallel.

71Swagger Code Generator. URL: https://github.com/swagger- api/swagger- codegen (Retrieved:
July 10, 2015).

https://github.com/swagger-api/swagger-codegen

6 Future Work 79

6 Future Work

Based on the current state of the defined abstraction layer and its prototype, there are still
plenty of tasks which can be worked on in future projects.

Besides minor optimizations and fixes, one improvement that targets mainly at the prototype
itself is the definition of additional adapters, e.g., to include Flynn72, the upcoming release
of OpenShift 373 or any other platform. Another feature, which did not make it into this
first release but was already evaluated in the initial approach, is the support of vertical
scaling. Vertical scaling probably is not as important as horizontal scaling, but belongs to
the core features which are available on most platforms. The major challenge that must be
solved is the combination of precise scaling systems which expect concrete numbers for each
adjustable property, as for instance on cloudControl and Cloud Foundry, with the custom
scaling levels of Heroku and OpenShift. The custom levels, for instance small, medium, and
large gears on OpenShift, represent fixed hardware specifications. One approach could be to
translate precise figures to custom levels, but an issue could be to find levels that match with
all providers. An alternative would be to translate the abstract levels to precise numbers and
apply the levels to meet the minimal requirements. Services are already supported, but there
are multiple aspects that could not yet be regarded. Some platforms, e.g., Cloud Foundry,
allow the creation of general services that must not be bound and can be used by multiple
applications. Aiming at a better standardization of PaaS in general, the implementation
of CAMP via a dedicated API version is one of the more ambitious projects that could be
realized in the future. The implementation of a CAMP adapter would allow to communicate
with additional platforms that support the standard without having to implement a new
tailored adapter.

Moving away from the previously mentioned implementation tasks to a more general per-
spective, Nucleus could be integrated with third party systems to gain additional insights on
PaaS platforms and their capabilities. If Nucleus would be integrated with the PaaS profiles
project, both projects could improve their quality. Nucleus could prevent semantic errors
before they appear, for instance by warning that a certain runtime is not supported by the
chosen provider, whereas some sections of the PaaS profiles, e.g., the available services and
their plans, could be updated automatically via the use of the Nucleus API. When combining
both projects, the emerging system would evolve to become a brokering solution that can
not only identify the right platform for the user’s needs, but also enhances the PaaS usage
without having to fear the effects of a vendor lock-in.

72Flynn. URL: https://flynn.io/ (Retrieved: June 28, 2015).
73OpenShift Origin 3 Repository. URL: https://github.com/openshift/origin (Retrieved: May 3, 2015).

https://flynn.io/
https://github.com/openshift/origin

7 Conclusion 80

7 Conclusion

The research question of this study was whether it is possible to abstract the differences
of vendor specific deployment and management interfaces on the PaaS layer by creating
an intermediary abstraction layer. After completing all major stages of the project, the
question can be affirmed. With its unified deployment and management capabilities, the
prototype allows to manage applications on different cloud platforms. Diversities among the
platforms could be successfully harmonized and the simulation of an application’s lifecycle
within the adapter tests proved that Nucleus can be used to deploy and manage applications
on cloudControl, Cloud Foundry, Heroku, and OpenShift. When switching the provider,
the effort to adapt existing DevOps automation, e.g., the deployment and management
processes inside continuous delivery, can be minimized. Nucleus increases the portability
and interoperability of PaaS applications and thus helps to avoid critical vendor lock-in
effects.

References 81

References

[Bad12] Lee Badger. Cloud Computing Synopsis and Recommendations: Recommen-
dations of the National Institute of Standards and Technology, 2012.

[BBSR13] Alexandre Beslic, Reda Bendraou, Julien Sopenal, and Jean-Yves Rigolet.
Towards a solution avoiding Vendor Lock-in to enable Migration Between
Cloud Platforms. In MDHPCL@ MoDELS, 2013.

[BIS+14] Antonio Brogi, Ahmad Ibrahim, Jacopo Soldani, José Carrasco, Javier Cubo,
Ernesto Pimentel, and Francesco D’Andria. SeaClouds: a European project on
seamless management of multi-cloud applications. ACM SIGSOFT Software
Engineering Notes, 39(1), 2014.

[Car13] Darryl Carlton. Cloud Computing 2014: ready for real business? Gartner,
Inc., 2013.

[CCP14] Jose Carrasco, Javier Cubo, and Ernesto Pimentel. Towards a flexible deploy-
ment of multi-cloud applications based on TOSCA and CAMP. In Proceedings
of the 1st SeaClouds Workshop, 2014.

[CH09] Daniele Catteddu and Giles Hogben. Cloud Computing - Benefits, risks and
recommendations for information security. European Union Agency for Net-
work and Information Security (ENISA), 2009.

[Clo10] Cloud Computing Use Case Discussion Group. Cloud Computing Use Cases
White Paper - Version 4.0. 2010.

[CNS14] David Cunha, Pedro Neves, and Pedro Sousa. PaaS manager: A platform-as-a-
service aggregation framework. Computer Science and Information Systems,
2014.

[DBCAZ12] Francesco D’Andria, Stefano Bocconi, Jesus Gorronogoitia Cruz, James Ahtes,
and Dimitris Zeginis. Cloud4Soa: Multi-cloud Application Management Across
PaaS Offerings. In 14th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, 2012.

[Dis10] Distributed Management Task Force (DMTF). Use cases and interactions for
managing clouds - A White Paper from the Open Cloud Standards Incubator.
June 18, 2010.

[Dus07] L. Dusseault. HTTP Extensions for Web Distributed Authoring and Ver-
sioning (WebDAV). RFC 4918 (Proposed Standard). Updated by RFC 5689.
Internet Engineering Task Force, June 2007.

[EK12] Evren Eren and Christian Karnath. Knackpunkt API. Standardisierte IaaS-
Cloud-Schnittstellen. NET, (11/2012), November 2012.

[FHH+99] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luoto-
nen, and L. Stewart. HTTP Authentication: Basic and Digest Access Au-
thentication. RFC 2617 (Draft Standard). Updated by RFC 7235. Internet
Engineering Task Force, June 1999.

[FK06] Joseph Farrell and Paul Klemperer. Coordination and Lock-In: Competition
with Switching Costs and Network Effects. SSRN Electronic Journal, 2006.

[FR14a] R. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1): Au-
thentication. RFC 7235 (Proposed Standard). Internet Engineering Task Force,
June 2014.

References 82

[FR14b] R. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1): Se-
mantics and Content. RFC 7231 (Proposed Standard). Internet Engineering
Task Force, June 2014.

[GCN+13] Carlos Gonçalves, David Cunha, Pedro Neves, Pedro Sousa, Joao Paulo Bar-
raca, and Diogo Gomes. Towards a cloud service broker for the Meta-Cloud.
In 12a Conferência sobre Redes de Computadores, 2013.

[Gen14] Frank Gens. Worldwide and Regional Public IT Cloud Services 2014–2018
Forecast. IDC, October 2014.

[GS12] Andrea Giessmann and Katarina Stanoevska-Slabeva. Business Models of
Platform as a Service (PaaS) Providers: Current State and Future Directions.
Journal of Information Technology Theory and Application, 12(3), 2012.

[HLST11] Michael Hogan, Fang Liu, Annie Sokol, and Jin Tong. NIST cloud computing
standards roadmap. NIST Special Publication, 2011.

[KLZ+13] Eleni Kamateri, Nikolaos Loutas, Dimitris Zeginis, et al. Cloud4SOA: A
Semantic-Interoperability PaaS Solution for Multi-cloud Platform Manage-
ment and Portability. In, Service-Oriented and Cloud Computing, 2013.

[KPM13] KPMG International. Breaking through the cloud adoption barriers. Febru-
ary 13, 2013.

[KW14] Stefan Kolb and Guido Wirtz. Towards Application Portability in Platform
as a Service. In Proceedings of the 8th IEEE International Symposium on
Service-Oriented System Engineering, April 2014.

[LKT11] Nikolaos Loutas, Eleni Kamateri, and Konstantinos Tarabanis. A Semantic
Interoperability Framework for Cloud Platform as a Service. In, November
2011.

[Mas98] L. Masinter. Returning Values from Forms: multipart/form-data. RFC 2388
(Proposed Standard). Internet Engineering Task Force, August 1998.

[MDYSM12] Madhavi Maiya, Sai Dasari, Ravi Yadav, Sandhya Shivaprasad, and Dejan
Milojicic. Quantifying Manageability of Cloud Platforms. 2013 IEEE 6th In-
ternational Conference on Cloud Computing (CLOUD), 2012.

[MLBZG11] Sean Marston, Zhi Li, Subhajyoti Bandyopadhyay, Juheng Zhang, and Anand
Ghalsasi. Cloud computing – The business perspective. Decision Support Sys-
tems, 51(1), April 2011.

[OAS14] OASIS. Cloud Application Management for Platforms Version 1.1. August
2014.

[OF10] Karsten Oberle and Mike Fisher. ETSI CLOUD–initial standardization re-
quirements for cloud services. In, Economics of Grids, Clouds, Systems, and
Services, 2010.

[PCR11] Dana Petcu, Ciprian Craciun, and Massimiliano Rak. Towards a cross plat-
form Cloud API. 1st International Conference on Cloud Computing and Ser-
vices Science, 2011.

[PHMH09] Randy Perry, Eric Hatcher, Robert P. Mahowald, and Stephen D. Hendrick.
Force. com cloud platform drives huge time to market and cost savings. IDC-
Whitepaper, 2009.

References 83

[PHMRS12] Fawaz Paraiso, Nicolas Haderer, Philippe Merle, Romain Rouvoy, and Lionel
Seinturier. A federated multi-cloud PaaS infrastructure. In 5th International
Conference on Cloud Computing, 2012.

[PMPC13] Dana Petcu, Georgiana Macariu, Silviu Panica, and Ciprian Crăciun. Portable
Cloud applications—From theory to practice. Future Generation Computer
Systems, 29(6), August 2013.

[Pri10] Ben Pring. Cloud Computing: The Next Generation of Outsourcing. Gartner,
Inc., November 1, 2010.

[Rig14] RightScale. RightScale 2014: State of the cloud report. Rightscale, Inc., April
2014.

[SR10] Amit Sheth and Ajith Ranabahu. Semantic modeling for cloud computing,
part 2. Internet Computing, IEEE, 14(4), 2010.

[SYMT13] Mohamed Sellami, Sami Yangui, Mohamed Mohamed, and Samir Tata. PaaS-
Independent Provisioning and Management of Applications in the Cloud. In
Proceedings of the 6th International Conference on Cloud Computing, June
2013.

[The12] The Open Group. Cloud ROI Survey Results Comparison 2011 & 2012. De-
cember 19, 2012.

[ZDB+13] Dimitris Zeginis, Francesco D’Andria, Stefano Bocconi, Jesus Gorronogoitia
Cruz, Oriol Collell Martin, Panagiotis Gouvas, Giannis Ledakis, and Kon-
stantinos A. Tarabanis. A user-centric multi-PaaS application management
solution for hybrid multi-Cloud scenarios. Scalable Computing: Practice and
Experience, 14(1), April 2013.

A
ppendix

84

Appendix A - API Operation Mappings

Operation cloudControl Cloud Foundry Heroku OpenShift
GET
Service

GET /addon/{sid} GET /v2/services/{sid}?inline-relations-depth=1 GET /addon-services/{sid} GET /cartridge/{sid}

GET
Service List

GET /addon GET /v2/services?inline-relations-depth=1 GET /addon-services GET /cartridges

GET
ServicePlan

GET /addon/{sid} GET /v2/services/{sid}/service_plans/{pid} GET /addon-services/{sid}/plans/{pid} GET /cartridge/{sid}

GET
ServicePlan List

GET /addon/{sid} GET /v2/services/{sid}/service_plans GET /addon-services/{sid}/plans GET /cartridge/{sid}

GET
Region

- - GET /regions GET /regions

GET
Region List

- - GET /regions GET /regions

GET
Application

GET /app/{aid}
GET /app/{aid}/deployment/nucleus

GET /v2/apps/{aid} GET /apps/{aid} GET /application/{aid}

GET
Application List

GET /app/
For each loaded application:
•GET /app/{aid}/deployment/nucleus

GET /v2/apps GET /apps GET /applications

POST
Application

POST /app
Body:

•repository_type = ’git’
•type = {application/runtimes[0]}
•name = {application/name}
POST /app/{application/name}/deployment
Body:

•name = ’nucleus’
POST /app/{application/name}/deployment/
{dplid}/addon
Body:

•addon = ’config.free’
•options = ’{"nucleus-initialized": "true"}’
PUT /app/{application/name}/deployment/
{dplid}/addon/config.free
Body:

•addon = ’config.free’
•settings = ’{"nucleus-initialized":null}’
•force = true

GET /v2/spaces
POST /v2/apps
Body:

•space_guid = {user_space_guid}
•buildpack = {application/runtimes[0]}
GET /v2/routes
PUT /v2/apps/{aid}/routes/{def_route_id}

POST /apps
Body:

•{application}
If a custom buildpack is applied:
PUT /apps/{aid}/buildpack-installations
Body:

•updates = {application/runtimes}

GET /domains
POST /domains/{domains[0]/name}/
applications
Body:

•{application}
PUT /application/{aid}
Body:

•keep_deployments = 2
•auto_deploy = false

PATCH
Application

- PUT /v2/apps/{aid} PATCH /apps/{aid}
Body:

•{application}
If a custom buildpack is applied:
PUT /apps/{aid}/buildpack-installations
Body:

•updates = {application/runtimes}

-

DELETE
Application

GET /app/{aid}/deployment
For each deployment:
•DELETE /app/{aid}/deployment/{dplid}
DELETE /app/{aid}

GET /v2/apps/{aid}/routes?q=host:{aid}&
inline-relations-depth=1
With default route:
•DELETE /v2/routes/{route_id}
DELETE /v2/apps/{aid}

DELETE /apps/{aid} DELETE /applications/{aid}

A
ppendix

85

Operation cloudControl Cloud Foundry Heroku OpenShift
POST
Application/-
data/deploy

GET /app/{aid}/deployment/nucleus
GET /user
Git: Clone repo, extract file, commit, push
If the application was already started:
PUT /app/{aid}/deployment/nucleus
Body:

•version = ’-1’

PUT /v2/apps/{aid}/bits
Body:

•multipart = true
•application = {file as .zip}
•async = false
•resources = ’[]’

GET /apps/{aid}
GET /account
Git: Clone repo, extract file, commit, push

GET /application/{aid}
GET /user
Git: Clone repo, extract file, commit, push
POST /application/{aid}/deployments
Body:

•force_clean_build = true

POST
Application/-
data/rebuild

GET /app/{aid}/deployment/nucleus
GET /user
Git: Clone repo, modify marker, commit, push
PUT /app/{aid}/deployment/nucleus
Body:

•version = ’-1’

POST /v2/apps/{aid}/restage GET /apps/{aid}
GET /account
Git: Clone repo, modify marker, commit, push

GET /application/{aid}
GET /user
Git: Clone repo, modify marker, commit, push
POST /application/{aid}/deployments
Body:

•force_clean_build = true

GET
Application/-
data/download

GET /app/{aid}/deployment/nucleus
Git: Clone repo

GET /v2/apps/{aid}/download GET /apps/{aid}
Git: Clone repo

GET /application/{aid}
Git: Clone repo

POST
Application/ac-
tions/start

GET /app/{aid}/deployment/nucleus
PUT /app/{aid}/deployment/nucleus
Body:

•version = ’-1’

PUT /v2/apps/{aid}
Body:

•state = ’STARTED’

PATCH /apps/{aid}
Body:

•maintenance = false
PATCH /apps/{aid}/formation
Body:

•updates = [{process:’worker’,quantity:1}]

POST /application/{aid}/events
Body:

•event = ’start’

POST
Application/ac-
tions/stop

- PUT /v2/apps/{aid}
Body:

•state = ’STOPPED’

PATCH /apps/{aid}
Body:

•maintenance = true
PATCH /apps/{aid}/formation
Body:

•updates = [{process:’worker’,quantity:0}]

POST /application/{aid}/events
Body:

•event = ’stop’

POST
Application/ac-
tions/restart

- stop
start

stop
start

POST /application/{aid}/events
Body:

•event = ’restart’

POST
Application/ac-
tions/scale

PUT /app/{aid}/deployment/nucleus
Body:

•min_boxes = {instances}

PUT /v2/apps/{aid}
Body:

•instances = {instances}

PATCH /apps/{aid}/formation
Body:

•updates =
[{process:’web’,quantity:{instances}}]

GET /application/{aid}
GET /user
a) If {instances} > {current_instances},
repeat {instances} - {current_instances}
times:
POST /application/{aid}/events
Body:

•event = ’scale-up’
b) If {instances} < {current_instances},
repeat {current_instances} - {instances}
times:
POST /application/{aid}/events
Body:

•event = ’scale-down’

GET
Domain

GET
/app/{aid}/deployment/{dplid}/alias/{did}

GET /v2/apps/{app_id}/routes
GET {route/domain_url}

GET /apps/{aid}/domains/{did} GET /application/{aid}/aliases/{did}

GET
Domain List

GET /app/{aid}/deployment/{dplid}/alias
For each alias in the response:
GET
/app/{aid}/deployment/{dplid}/alias/{did}

GET /v2/apps/{app_id}/routes
Load for each route:
GET {route/domain_url}

GET /apps/{aid}/domains GET /application/{aid}/aliases

A
ppendix

86

Operation cloudControl Cloud Foundry Heroku OpenShift
POST
Domain

POST /app/{aid}/deployment/{dplid}/alias
Body:

•name = {domain/name}

GET /v2/private_domains
GET /v2/shared_domains
If such a domain does not exist:
GET /v2/spaces
POST /v2/private_domains
Body:

•name: {domain_name}
•owning_organization_guid: {user_org_guid}

GET /v2/routes
If the route does not exist:
GET /v2/spaces
POST /v2/routes
Body:

•domain_guid = {domain/guid}
•host = {domain_host}
•space_guid = {user_space_guid}

PUT /v2/apps/{aid}/routes/{route/guid}

POST /apps/{aid}/domains
Body:

•hostname = {domain/name}

POST /application/{aid}/aliases
Body:

•id = {domain/name}

DELETE
Domain

DELETE
/app/{aid}/deployment/{dplid}/alias/{did}

DELETE /v2/apps/{aid}/routes/{did}
GET /v2/routes/{did}/apps
If route_in_apps/total_results == 0:
DELETE /v2/routes/{did}

DELETE /apps/{aid}/domains/{did} DELETE /application/{aid}/aliases/{did}

GET
Installed Service

GET /app/{aid}/deployment/{dplid}/addon
GET /app/{aid}/deployment/{dplid}/addon/
{assigned_addon_id}
GET /addon/{sid}

GET /v2/services/{sid}/service_plans
GET /v2/apps/{aid}/service_bindings?inline-
relations-depth=1

GET /addon-services/{sid} GET /application/{aid}/cartridge/{sid}

GET
Installed Service
List

GET /app/{aid}/deployment/{dplid}/addon
For each addon in the list:
GET /addon/{assignment/addon_option/name}

GET /v2/apps/{aid}/service_bindings?inline-
relations-depth=1

GET /addon-services GET /application/{aid}/cartridges

POST
Installed Service

POST /app/{aid}/deployment/{dplid}/addon
Body:

•addon = ’{service/id}.{plan/id}’

GET /v2/services/{sid}
POST /v2/service_instances
Body:

•space_guid = {user_space_guid}
•service_plan_guid = {plan/id}
•name = {dynamically generated name}
POST /v2/service_bindings
Body:

•service_instance_guid = {instance/guid}
•app_guid = {aid}

POST /apps/{aid}/addons
Body:

•plan = ’{service/id}:{plan/id}’

GET /cartridge/{sid}
POST /application/{aid}/cartridges
Body:

•cartridge = {service/id}

PATCH
Installed Service

PUT
/app/{aid}/deployment/{dplid}/addon/{pid}
Body:

•addon = {plan/id}

GET /v2/services/{sid}/service_plans
GET /v2/apps/{aid}/service_bindings?inline-
relations-depth=1
PUT /v2/service_instances/
{service_instance_guid}
Body:

•service_plan_guid = {plan/id}

PATCH /apps/{aid}/addons/{sid}
Body:

•plan = {plan/id}

-

DELETE
Installed Service

DELETE
/app/{aid}/deployment/{dplid}/addon/{pid}

GET /v2/services/{sid}/service_plans
GET /v2/apps/{aid}/service_bindings?inline-
relations-depth=1
DELETE /v2/apps/{aid}/service_bindings/
{binding_guid}
DELETE /v2/service_instances/
{service_instance_guid}

DELETE /apps/{aid}/addons/{assid} DELETE /application/{aid}/cartridge/{sid}

GET
Environment
Variable

GET /app/{aid}/deployment/{dplid}/addon/
config.free

GET /v2/apps/{aid}/env GET /apps/{aid}/config-vars GET /application/{aid}/environment-
variable/{vid}

GET
Environment
Variable List

GET /app/{aid}/deployment/{dplid}/addon/
config.free

GET /v2/apps/{aid}/env GET /apps/{aid}/config-vars GET /application/{aid}/environment-variables

A
ppendix

87

Operation cloudControl Cloud Foundry Heroku OpenShift
POST
Environment
Variable

PUT /app/{aid}/deployment/{dplid}/addon/
config.free
Body:

•addon = ’config.free’
•force = true
•settings =
’{"{variable/key}":"{variable/value}"}’

GET /v2/apps/{aid}/env
PUT /v2/apps/{aid}
Body:

•environment_json =
{current environment_json} +
{variable/key}:{variable/value}

PATCH /apps/{aid}/config-vars
Body:

•{variable}

POST /application/{aid}/environment-variables
Body:

•name = {variable/key}
•value = {variable/value}

PATCH
Environment
Variable

Platform does not offer an update operation.
Values can be applied using the operations that are described in the above CREATE Environment Variable mapping.

PUT /application/{aid}/environment-
variable/{vid}
Body:

•value = {variable/value}

DELETE
Environment
Variable

PUT /app/{aid}/deployment/{dplid}/addon/
config.free
Body:

•addon = ’config.free’
•force = true
•settings = ’{"{variable/key}":null}’

GET /v2/apps/{aid}/env
PUT /v2/apps/{aid}
Body:

•environment_json =
{current environment_json} - {var_id}

PATCH /apps/{aid}/config-vars
Body:

•{var_id} = null

DELETE /application/{aid}/environment-
variable/{vid}

GET
Log List

- GET /v2/apps/{aid}/instances/0/files/logs - via SSH interaction

GET
Log

GET /app/{aid}/deployment/{dplid}/log/{lid} a) If log is a stream:
GET {loggregator_endpoint}:443/recent?app={aid}
b) If log is a file:
GET /v2/apps/{aid}/instances/0/files/logs/{lid}

POST /apps/{aid}/log-sessions
Body:

•source = {’heroku’ or ’app’}
•tail = false
•(optional) dyno = {’api’ or ’router’}
GET {logplex_url}

via SSH interaction

GET
Log download

Load the log with the GET Log operation, then bundle it to the response archive

GET
Log download all

Load all logs that are included in the list with the GET Log operation, then bundle them to the response archive

GET
Log/tail

GET /app/{aid}/deployment/{dplid}/log/{lid}
?timestamp={latest_msg_time}

a) If log is a stream:
wss://{loggregator_endpoint}:443/tail/?app={aid}
b) If log is a file, call in loop:
GET /v2/apps/{aid}/instances/0/files/logs/{lid}

POST /apps/{aid}/log-sessions
Body:

•source = {’heroku’ or ’app’}
•tail = true
•(optional) dyno = {’api’ or ’router’}
Connect to stream:
GET {logplex_url}

via SSH interaction

LEGEND

Font Style bold : Conditional instructions bold + italic : Use other operation italic : comments, configuration variables, non-HTTP interactions
{in curly braces} : request variable {italic in curly braces} : variable with static or previous response related value

Variable Abbreviations aid : application_id sid : service_id
pid : plan_id did : domain_id
vid : variable_id lid : log_id

[only used with cloudControl] dplid : deployment_id assid : assignment_id

Table 33: Operations mapping overview, from Nucleus API to vendor specific operations

Appendix 88

Appendix B - Adapter test spec template

Listing 28: Adapter test spec template
1 require 'spec/adapter/adapter_spec_helper'
2

3 describe Nucleus::Adapters::{API_VERSION}::{VENDOR_CLASS} do
4 before : all do
5 # skip these example groups / tests for this adapter. E.g.:
6 # @unsupported = ['with valid credentials is compliant and application update']
7 @unsupported = []
8 @endpoint = '{ENDPOINT_ID}'
9 @api_version = '{API_VERSION}'

10 @app_min = { original_name: 'nucleustestappminproperties', updated_name: '
nucleustestappminproperties', region: 'default' }

11 @app_all = { original_name: 'nucleustestappallupdated', updated_name: '
nucleustestappallupdated', region: 'default' }

12 end
13 before do |example|
14 if skip_example?(described_class, example.metadata[:full_description], @unsupported)
15 skip('This feature is currently not supported by CloudControl − 501')
16 end
17 # reload adapter for each test
18 @adapter = load_adapter(@endpoint, @api_version)
19 end
20

21 context 'with invalid credentials ' do
22 let !(: request_headers) { credentials(@endpoint, false) }
23 include_examples 'compliant adapter with invalid credentials '
24 end
25

26 describe 'with missing credentials ' do
27 let !(: request_headers) { {} }
28 include_examples 'compliant adapter with invalid credentials '
29 end
30

31 context 'with valid credentials ' do
32 let !(: request_headers) { credentials(@endpoint) }
33 include_examples 'compliant adapter with valid credentials '
34

35 describe 'native adapter call ' do
36 describe 'against endpoint' do
37 describe 'does fetch all available addons' do
38 before do
39 get "/endpoints/#{@endpoint}/call/addon", request_headers
40 end
41 include_examples 'a valid GET request'
42 it 'with the specified structure ' do
43 expect(json_body[0].keys).to include (:name, :stage, :options)
44 end
45 it 'with the matching content declaration' do
46 expect_json_types(:array)
47 end
48 end
49 end
50 end
51 end
52 end

Appendix 89

Appendix C - Swagger UI - API documentation

Figure 13: Swagger UI Overview, showing the grouped API objects and operations

Figure 14: Swagger UI showing all methods available in an operation group

Figure 15: Swagger UI presentation of the PATCH request to update an application

Appendix 90

Figure 16: Swagger UI presentation of the GET request to list all applications

Bamberger Beiträge zur Wirtschaftsinformatik

Nr. 1 (1989) Augsburger W., Bartmann D., Sinz E.J.: Das Bamberger Modell: Der Diplom-Stu-
diengang Wirtschaftsinformatik an der Universität Bamberg (Nachdruck Dez.
1990)

Nr. 2 (1990) Esswein W.: Definition, Implementierung und Einsatz einer kompatiblen Daten-
bankschnittstelle für PROLOG

Nr. 3 (1990) Augsburger W., Rieder H., Schwab J.: Endbenutzerorientierte Informationsgewin-
nung aus numerischen Daten am Beispiel von Unternehmenskennzahlen

Nr. 4 (1990) Ferstl O.K., Sinz E.J.: Objektmodellierung betrieblicher Informationsmodelle im
Semantischen Objektmodell (SOM) (Nachdruck Nov. 1990)

Nr. 5 (1990) Ferstl O.K., Sinz E.J.: Ein Vorgehensmodell zur Objektmodellierung betrieblicher
Informationssysteme im Semantischen Objektmodell (SOM)

Nr. 6 (1991) Augsburger W., Rieder H., Schwab J.: Systemtheoretische Repräsentation von
Strukturen und Bewertungsfunktionen über zeitabhängigen betrieblichen numeri-
schen Daten

Nr. 7 (1991) Augsburger W., Rieder H., Schwab J.: Wissensbasiertes, inhaltsorientiertes Retrie-
val statistischer Daten mit EISREVU / Ein Verarbeitungsmodell für eine modulare
Bewertung von Kennzahlenwerten für den Endanwender

Nr. 8 (1991) Schwab J.: Ein computergestütztes Modellierungssystem zur Kennzahlenbewertung

Nr. 9 (1992) Gross H.-P.: Eine semantiktreue Transformation vom Entity-Relationship-Modell
in das Strukturierte Entity-Relationship-Modell

Nr. 10 (1992) Sinz E.J.: Datenmodellierung im Strukturierten Entity-Relationship-Modell
(SERM)

Nr. 11 (1992) Ferstl O.K., Sinz E. J.: Glossar zum Begriffsystem des Semantischen Objektmo-
dells

Nr. 12 (1992) Sinz E. J., Popp K.M.: Zur Ableitung der Grobstruktur des konzeptuellen Schemas
aus dem Modell der betrieblichen Diskurswelt

Nr. 13 (1992) Esswein W., Locarek H.: Objektorientierte Programmierung mit dem Objekt-Rol-
lenmodell

Nr. 14 (1992) Esswein W.: Das Rollenmodell der Organsiation: Die Berücksichtigung aufbauor-
ganisatorische Regelungen in Unternehmensmodellen

Nr. 15 (1992) Schwab H. J.: EISREVU-Modellierungssystem. Benutzerhandbuch

Nr. 16 (1992) Schwab K.: Die Implementierung eines relationalen DBMS nach dem
Client/Server-Prinzip

Nr. 17 (1993) Schwab K.: Konzeption, Entwicklung und Implementierung eines computerge-
stützten Bürovorgangssystems zur Modellierung von Vorgangsklassen und Ab-
wicklung und Überwachung von Vorgängen. Dissertation

List of previous University of Bamberg reports 91

List of previous University of Bamberg reports

Nr. 18 (1993) Ferstl O.K., Sinz E.J.: Der Modellierungsansatz des Semantischen Objektmodells

Nr. 19 (1994) Ferstl O.K., Sinz E.J., Amberg M., Hagemann U., Malischewski C.: Tool-Based
Business Process Modeling Using the SOM Approach

Nr. 20 (1994) Ferstl O.K., Sinz E.J.: From Business Process Modeling to the Specification of
Distributed Business Application Systems - An Object-Oriented Approach -. 1st
edition, June 1994

 Ferstl O.K., Sinz E.J. : Multi-Layered Development of Business Process Models
and Distributed Business Application Systems - An Object-Oriented Approach -.
2nd edition, November 1994

Nr. 21 (1994) Ferstl O.K., Sinz E.J.: Der Ansatz des Semantischen Objektmodells zur Modellie-
rung von Geschäftsprozessen

Nr. 22 (1994) Augsburger W., Schwab K.: Using Formalism and Semi-Formal Constructs for
Modeling Information Systems

Nr. 23 (1994) Ferstl O.K., Hagemann U.: Simulation hierarischer objekt- und transaktionsorien-
tierter Modelle

Nr. 24 (1994) Sinz E.J.: Das Informationssystem der Universität als Instrument zur zielgerichte-
ten Lenkung von Universitätsprozessen

Nr. 25 (1994) Wittke M., Mekinic, G.: Kooperierende Informationsräume. Ein Ansatz für ver-
teilte Führungsinformationssysteme

Nr. 26 (1995) Ferstl O.K., Sinz E.J.: Re-Engineering von Geschäftsprozessen auf der Grundlage
des SOM-Ansatzes

Nr. 27 (1995) Ferstl, O.K., Mannmeusel, Th.: Dezentrale Produktionslenkung. Erscheint in CIM-
Management 3/1995

Nr. 28 (1995) Ludwig, H., Schwab, K.: Integrating cooperation systems: an event-based approach

Nr. 30 (1995) Augsburger W., Ludwig H., Schwab K.: Koordinationsmethoden und -werkzeuge
bei der computergestützten kooperativen Arbeit

Nr. 31 (1995) Ferstl O.K., Mannmeusel T.: Gestaltung industrieller Geschäftsprozesse

Nr. 32 (1995) Gunzenhäuser R., Duske A., Ferstl O.K., Ludwig H., Mekinic G., Rieder H.,
Schwab H.-J., Schwab K., Sinz E.J., Wittke M: Festschrift zum 60. Geburtstag von
Walter Augsburger

Nr. 33 (1995) Sinz, E.J.: Kann das Geschäftsprozeßmodell der Unternehmung das unterneh-
mensweite Datenschema ablösen?

Nr. 34 (1995) Sinz E.J.: Ansätze zur fachlichen Modellierung betrieblicher Informationssysteme -
Entwicklung, aktueller Stand und Trends -

Nr. 35 (1995) Sinz E.J.: Serviceorientierung der Hochschulverwaltung und ihre Unterstützung
durch workflow-orientierte Anwendungssysteme

Nr. 36 (1996) Ferstl O.K., Sinz, E.J., Amberg M.: Stichwörter zum Fachgebiet Wirtschaftsinfor-
matik. Erscheint in: Broy M., Spaniol O. (Hrsg.): Lexikon Informatik und Kom-
munikationstechnik, 2. Auflage, VDI-Verlag, Düsseldorf 1996

List of previous University of Bamberg reports 92

Nr. 37 (1996) Ferstl O.K., Sinz E.J.: Flexible Organizations Through Object-oriented and Trans-
action-oriented Information Systems, July 1996

Nr. 38 (1996) Ferstl O.K., Schäfer R.: Eine Lernumgebung für die betriebliche Aus- und Weiter-
bildung on demand, Juli 1996

Nr. 39 (1996) Hazebrouck J.-P.: Einsatzpotentiale von Fuzzy-Logic im Strategischen Manage-
ment dargestellt an Fuzzy-System-Konzepten für Portfolio-Ansätze

Nr. 40 (1997) Sinz E.J.: Architektur betrieblicher Informationssysteme. In: Rechenberg P., Pom-
berger G. (Hrsg.): Handbuch der Informatik, Hanser-Verlag, München 1997

Nr. 41 (1997) Sinz E.J.: Analyse und Gestaltung universitärer Geschäftsprozesse und Anwen-
dungssysteme. Angenommen für: Informatik ’97. Informatik als Innovationsmotor.
27. Jahrestagung der Gesellschaft für Informatik, Aachen 24.-26.9.1997

Nr. 42 (1997) Ferstl O.K., Sinz E.J., Hammel C., Schlitt M., Wolf S.: Application Objects –
fachliche Bausteine für die Entwicklung komponentenbasierter Anwendungssy-
steme. Angenommen für: HMD – Theorie und Praxis der Wirtschaftsinformatik.
Schwerpunkheft ComponentWare, 1997

Nr. 43 (1997): Ferstl O.K., Sinz E.J.: Modeling of Business Systems Using the Semantic Object
Model (SOM) – A Methodological Framework - . Accepted for: P. Bernus, K.
Mertins, and G. Schmidt (ed.): Handbook on Architectures of Information Systems.
International Handbook on Information Systems, edited by Bernus P., Blazewicz
J., Schmidt G., and Shaw M., Volume I, Springer 1997

 Ferstl O.K., Sinz E.J.: Modeling of Business Systems Using (SOM), 2nd Edition.
Appears in: P. Bernus, K. Mertins, and G. Schmidt (ed.): Handbook on Architectu-
res of Information Systems. International Handbook on Information Systems, edi-
ted by Bernus P., Blazewicz J., Schmidt G., and Shaw M., Volume I, Springer
1998

Nr. 44 (1997) Ferstl O.K., Schmitz K.: Zur Nutzung von Hypertextkonzepten in Lernumgebun-
gen. In: Conradi H., Kreutz R., Spitzer K. (Hrsg.): CBT in der Medizin – Metho-
den, Techniken, Anwendungen -. Proceedings zum Workshop in Aachen 6. – 7.
Juni 1997. 1. Auflage Aachen: Verlag der Augustinus Buchhandlung

Nr. 45 (1998) Ferstl O.K.: Datenkommunikation. In. Schulte Ch. (Hrsg.): Lexikon der Logistik,
Oldenbourg-Verlag, München 1998

Nr. 46 (1998) Sinz E.J.: Prozeßgestaltung und Prozeßunterstützung im Prüfungswesen. Erschie-
nen in: Proceedings Workshop „Informationssysteme für das Hochschulmanage-
ment“. Aachen, September 1997

Nr. 47 (1998) Sinz, E.J.:, Wismans B.: Das „Elektronische Prüfungsamt“. Erscheint in: Wirt-
schaftswissenschaftliches Studium WiSt, 1998

Nr. 48 (1998) Haase, O., Henrich, A.: A Hybrid Respresentation of Vague Collections for Distri-
buted Object Management Systems. Erscheint in: IEEE Transactions on Know-
ledge and Data Engineering

Nr. 49 (1998) Henrich, A.: Applying Document Retrieval Techniques in Software Engineering
Environments. In: Proc. International Conference on Database and Expert Systems

List of previous University of Bamberg reports 93

Applications. (DEXA 98), Vienna, Austria, Aug. 98, pp. 240-249, Springer, Lec-
ture Notes in Computer Sciences, No. 1460

Nr. 50 (1999) Henrich, A., Jamin, S.: On the Optimization of Queries containing Regular Path
Expressions. Erscheint in: Proceedings of the Fourth Workshop on Next Genera-
tion Information Technologies and Systems (NGITS’99), Zikhron-Yaakov, Israel,
July, 1999 (Springer, Lecture Notes)

Nr. 51 (1999) Haase O., Henrich, A.: A Closed Approach to Vague Collections in Partly Inacces-
sible Distributed Databases. Erscheint in: Proceedings of the Third East-European
Conference on Advances in Databases and Information Systems – ADBIS’99, Ma-
ribor, Slovenia, September 1999 (Springer, Lecture Notes in Computer Science)

Nr. 52 (1999) Sinz E.J., Böhnlein M., Ulbrich-vom Ende A.: Konzeption eines Data Warehouse-
Systems für Hochschulen. Angenommen für: Workshop „Unternehmen Hoch-
schule“ im Rahmen der 29. Jahrestagung der Gesellschaft für Informatik, Pader-
born, 6. Oktober 1999

Nr. 53 (1999) Sinz E.J.: Konstruktion von Informationssystemen. Der Beitrag wurde in geringfü-
gig modifizierter Fassung angenommen für: Rechenberg P., Pomberger G. (Hrsg.):
Informatik-Handbuch. 2., aktualisierte und erweiterte Auflage, Hanser, München
1999

Nr. 54 (1999) Herda N., Janson A., Reif M., Schindler T., Augsburger W.: Entwicklung des In-
tranets SPICE: Erfahrungsbericht einer Praxiskooperation.

Nr. 55 (2000) Böhnlein M., Ulbrich-vom Ende A.: Grundlagen des Data Warehousing.
Modellierung und Architektur

Nr. 56 (2000) Freitag B, Sinz E.J., Wismans B.: Die informationstechnische Infrastruktur der
Virtuellen Hochschule Bayern (vhb). Angenommen für Workshop "Unternehmen
Hochschule 2000" im Rahmen der Jahrestagung der Gesellschaft f. Informatik,
Berlin 19. - 22. September 2000

Nr. 57 (2000) Böhnlein M., Ulbrich-vom Ende A.: Developing Data Warehouse Structures from
Business Process Models.

Nr. 58 (2000) Knobloch B.: Der Data-Mining-Ansatz zur Analyse betriebswirtschaftlicher Daten.

Nr. 59 (2001) Sinz E.J., Böhnlein M., Plaha M., Ulbrich-vom Ende A.: Architekturkonzept eines
verteilten Data-Warehouse-Systems für das Hochschulwesen. Angenommen für:
WI-IF 2001, Augsburg, 19.-21. September 2001

Nr. 60 (2001) Sinz E.J., Wismans B.: Anforderungen an die IV-Infrastruktur von Hochschulen.
Angenommen für: Workshop „Unternehmen Hochschule 2001“ im Rahmen der
Jahrestagung der Gesellschaft für Informatik, Wien 25. – 28. September 2001

Änderung des Titels der Schriftenreihe Bamberger Beiträge zur Wirtschaftsinformatik in Bamberger
Beiträge zur Wirtschaftsinformatik und Angewandten Informatik ab Nr. 61

Note: The title of our technical report series has been changed from Bamberger Beiträge zur
Wirtschaftsinformatik to Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik
starting with TR No. 61

List of previous University of Bamberg reports 94

Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten
Informatik

Nr. 61 (2002) Goré R., Mendler M., de Paiva V. (Hrsg.): Proceedings of the International
Workshop on Intuitionistic Modal Logic and Applications (IMLA 2002),
Copenhagen, July 2002.

Nr. 62 (2002) Sinz E.J., Plaha M., Ulbrich-vom Ende A.: Datenschutz und Datensicherheit in
einem landesweiten Data-Warehouse-System für das Hochschulwesen. Erscheint
in: Beiträge zur Hochschulforschung, Heft 4-2002, Bayerisches Staatsinstitut für
Hochschulforschung und Hochschulplanung, München 2002

Nr. 63 (2005) Aguado, J., Mendler, M.: Constructive Semantics for Instantaneous Reactions

Nr. 64 (2005) Ferstl, O.K.: Lebenslanges Lernen und virtuelle Lehre: globale und lokale
Verbesserungspotenziale. Erschienen in: Kerres, Michael; Keil-Slawik, Reinhard
(Hrsg.); Hochschulen im digitalen Zeitalter: Innovationspotenziale und
Strukturwandel, S. 247 – 263; Reihe education quality forum, herausgegeben durch
das Centrum für eCompetence in Hochschulen NRW, Band 2, Münster/New
York/München/Berlin: Waxmann 2005

Nr. 65 (2006) Schönberger, Andreas: Modelling and Validating Business Collaborations: A Case
Study on RosettaNet

Nr. 66 (2006) Markus Dorsch, Martin Grote, Knut Hildebrandt, Maximilian Röglinger, Matthias
Sehr, Christian Wilms, Karsten Loesing, and Guido Wirtz: Concealing Presence
Information in Instant Messaging Systems, April 2006

Nr. 67 (2006) Marco Fischer, Andreas Grünert, Sebastian Hudert, Stefan König, Kira Lenskaya,
Gregor Scheithauer, Sven Kaffille, and Guido Wirtz: Decentralized Reputation
Management for Cooperating Software Agents in Open Multi-Agent Systems,
April 2006

Nr. 68 (2006) Michael Mendler, Thomas R. Shiple, Gérard Berry: Constructive Circuits and the
Exactness of Ternary Simulation

Nr. 69 (2007) Sebastian Hudert: A Proposal for a Web Services Agreement Negotiation Protocol
Framework . February 2007

Nr. 70 (2007) Thomas Meins: Integration eines allgemeinen Service-Centers für PC-und
Medientechnik an der Universität Bamberg – Analyse und Realisierungs-
Szenarien. February 2007 (out of print)

Nr. 71 (2007) Andreas Grünert: Life-cycle assistance capabilities of cooperating Software Agents
for Virtual Enterprises. März 2007

Nr. 72 (2007) Michael Mendler, Gerald Lüttgen: Is Observational Congruence on μ-Expressions
Axiomatisable in Equational Horn Logic?

Nr. 73 (2007) Martin Schissler: out of print

Nr. 74 (2007) Sven Kaffille, Karsten Loesing: Open chord version 1.0.4 User’s Manual.
Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr.
74, Bamberg University, October 2007. ISSN 0937-3349.

List of previous University of Bamberg reports 95

Nr. 75 (2008) Karsten Loesing (Hrsg.): Extended Abstracts of the Second Privacy Enhancing
Technologies Convention (PET-CON 2008.1). Bamberger Beiträge zur
Wirtschaftsinformatik und Angewandten Informatik Nr. 75, Bamberg University,
April 2008. ISSN 0937-3349.

Nr. 76 (2008) Gregor Scheithauer, Guido Wirtz: Applying Business Process Management
Systems – A Case Study. Bamberger Beiträge zur Wirtschaftsinformatik und
Angewandten Informatik Nr. 76, Bamberg University, May 2008. ISSN 0937-
3349.

Nr. 77 (2008) Michael Mendler, Stephan Scheele: Towards Constructive Description Logics for
Abstraction and Refinement. Bamberger Beiträge zur Wirtschaftsinformatik und
Angewandten Informatik Nr. 77, Bamberg University, September 2008. ISSN
0937-3349.

Nr. 78 (2008) Gregor Scheithauer, Matthias Winkler: A Service Description Framework for
Service Ecosystems. Bamberger Beiträge zur Wirtschaftsinformatik und
Angewandten Informatik Nr. 78, Bamberg University, October 2008. ISSN 0937-
3349.

Nr. 79 (2008) Christian Wilms: Improving the Tor Hidden Service Protocol Aiming at Better
Performances. Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten
Informatik Nr. 79, Bamberg University, November 2008. ISSN 0937-3349.

Nr. 80 (2009) Thomas Benker, Stefan Fritzemeier, Matthias Geiger, Simon Harrer, Tristan
Kessner, Johannes Schwalb, Andreas Schönberger, Guido Wirtz: QoS Enabled
B2B Integration. Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten
Informatik Nr. 80, Bamberg University, May 2009. ISSN 0937-3349.

Nr. 81 (2009) Ute Schmid, Emanuel Kitzelmann, Rinus Plasmeijer (Eds.): Proceedings of the
ACM SIGPLAN Workshop on Approaches and Applications of Inductive
Programming (AAIP'09), affiliated with ICFP 2009, Edinburgh, Scotland,
September 2009. Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten
Informatik Nr. 81, Bamberg University, September 2009. ISSN 0937-3349.

Nr. 82 (2009) Ute Schmid, Marco Ragni, Markus Knauff (Eds.): Proceedings of the KI 2009
Workshop Complex Cognition, Paderborn, Germany, September 15, 2009.
Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr.
82, Bamberg University, October 2009. ISSN 0937-3349.

Nr. 83 (2009) Andreas Schönberger, Christian Wilms and Guido Wirtz: A Requirements Analysis
of Business-to-Business Integration. Bamberger Beiträge zur Wirtschaftsinformatik
und Angewandten Informatik Nr. 83, Bamberg University, December 2009. ISSN
0937-3349.

Nr. 84 (2010) Werner Zirkel, Guido Wirtz: A Process for Identifying Predictive Correlation
Patterns in Service Management Systems. Bamberger Beiträge zur
Wirtschaftsinformatik und Angewandten Informatik Nr. 84, Bamberg University,
February 2010. ISSN 0937-3349.

Nr. 85 (2010) Jan Tobias Mühlberg und Gerald Lüttgen: Symbolic Object Code Analysis.
Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr.
85, Bamberg University, February 2010. ISSN 0937-3349.

List of previous University of Bamberg reports 96

Nr. 86 (2010) Werner Zirkel, Guido Wirtz: Proaktives Problem Management durch
Eventkorrelation – ein Best Practice Ansatz. Bamberger Beiträge zur
Wirtschaftsinformatik und Angewandten Informatik Nr. 86, Bamberg University,
August 2010. ISSN 0937-3349.

Nr. 87 (2010) Johannes Schwalb, Andreas Schönberger: Analyzing the Interoperability of WS-
Security and WS-ReliableMessaging Implementations. Bamberger Beiträge zur
Wirtschaftsinformatik und Angewandten Informatik Nr. 87, Bamberg University,
September 2010. ISSN 0937-3349.

Nr. 88 (2011) Jörg Lenhard: A Pattern-based Analysis of WS-BPEL and Windows Workflow.
Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr.
88, Bamberg University, March 2011. ISSN 0937-3349.

Nr. 89 (2011) Andreas Henrich, Christoph Schlieder, Ute Schmid [eds.]: Visibility in Information
Spaces and in Geographic Environments – Post-Proceedings of the KI’11
Workshop. Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten
Informatik Nr. 89, Bamberg University, December 2011. ISSN 0937-3349.

Nr. 90 (2012) Simon Harrer, Jörg Lenhard: Betsy - A BPEL Engine Test System. Bamberger
Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr. 90, Bamberg
University, July 2012. ISSN 0937-3349.

Nr. 91 (2013) Michael Mendler, Stephan Scheele: On the Computational Interpretation of CKn
for Contextual Information Processing - Ancillary Material. Bamberger Beiträge
zur Wirtschaftsinformatik und Angewandten Informatik Nr. 91, Bamberg
University, May 2013. ISSN 0937-3349.

Nr. 92 (2013) Matthias Geiger: BPMN 2.0 Process Model Serialization Constraints. Bamberger
Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr. 92, Bamberg
University, May 2013. ISSN 0937-3349.

Nr. 93 (2014) Cedric Röck, Simon Harrer: Literature Survey of Performance Benchmarking
Approaches of BPEL Engines. Bamberger Beiträge zur Wirtschaftsinformatik und
Angewandten Informatik Nr. 93, Bamberg University, May 2014. ISSN 0937-
3349.

Nr. 94 (2014) Joaquin Aguado, Michael Mendler, Reinhard von Hanxleden, Insa Fuhrmann:
Grounding Synchronous Deterministic Concurrency in Sequential Programming.
Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr.
94, Bamberg University, August 2014. ISSN 0937-3349.

Nr. 95 (2014) Michael Mendler, Bruno Bodin, Partha S Roop, Jia Jie Wang: WCRT for
Synchronous Programs: Studying the Tick Alignment Problem. Bamberger
Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr. 95, Bamberg
University, August 2014. ISSN 0937-3349.

Nr. 96 (2015) Joaquin Aguado, Michael Mendler, Reinhard von Hanxleden, Insa Fuhrmann:
Denotational Fixed-Point Semantics for Constructive Scheduling of Synchronous
Concurrency. Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten
Informatik Nr. 96, Bamberg University, April 2015. ISSN 0937-3349.

List of previous University of Bamberg reports 97

Nr. 97 (2015) Thomas Benker: Konzeption einer Komponentenarchitektur für prozessorientierte
OLTP- & OLAP-Anwendungssysteme. Bamberger Beiträge zur Wirtschafts-
informatik und Angewandten Informatik Nr. 97, Bamberg University, Oktober
2015. ISSN 0937-3349.

Nr. 98 (2016) Sascha Fendrich, Gerald Lüttgen: A Generalised Theory of Interface Automata,
Component Compatibility and Error. Bamberger Beiträge zur
Wirtschaftsinformatik und Angewandten Informatik Nr. 98, Bamberg University,
March 2016. ISSN 0937-3349.

Nr. 99 (2014) Christian Preißinger, Simon Harrer: Static Analysis Rules of the BPEL
Specification: Tagging, Formalization and Tests. Bamberger Beiträge zur
Wirtschaftsinformatik und Angewandten Informatik Nr. 99, Bamberg University,
August 2014. ISSN 0937-3349.

Nr. 100 (2016) Cedric Röck, Stefan Kolb: Nucleus - Unified Deployment and Management for
Platform as a Service. Bamberger Beiträge zur Wirtschaftsinformatik und
Angewandten Informatik Nr. 100, Bamberg University, March 2016. ISSN 0937-
3349.

List of previous University of Bamberg reports 98

	Introduction
	Approach
	Vendor Selection Criteria
	Selected Vendors
	Vendor API Evaluation
	Initial Layout

	Design
	API Objects
	Region
	Service
	Application

	API Structure
	Authentication
	Versioning and Accept Header
	Message Formats

	API Operations
	Vendor, Provider, and Endpoint Operations
	Service and Service Plan Operations
	Region Operations
	Application Object Operations
	Application Child Object Operations
	Application Logging Operations
	Vendor Specific Parameters
	Custom Endpoint API Calls

	API Mappings
	API Object Mapping
	API Operation Mapping
	API Request Mapping

	API Design Challenges

	Prototype
	Technology
	Project Structure
	Initialization
	API Route Setup
	Adapters
	Adapter Matching
	Adapter Compatibility
	Adapter Implementation

	Git Deployment and Repository Authentication
	Exception Handling
	Authenticated API Requests
	Automated Tests
	Adapter Tests

	Documentation
	Usage
	System Requirements
	Configuration
	Ruby Gem
	Server

	Evaluation
	Future Work
	Conclusion
	References
	Appendix
	List of previous University of Bamberg reports

