
Distributed Service Discovery with Guarantees in
Peer-to-Peer Networks using Distributed Hashtables

Sven Kaffille, Karsten Loesing, and Guido Wirtz
Distributed and Mobile Systems Group

Otto-Friedrich-Universiẗat Bamberg
Feldkirchenstraße 21, 96047 Bamberg, GERMANY

{sven.kaffille|karsten.loesing|guido.wirtz}@wiai.uni-bamberg.de
Phone: +49951863{2812|2810|2527}; Fax: +499518635528

Conference: PDPTA’05; Presenting author (if accepted): Karsten Loesing

Abstract— This paper proposes a protocol for decentralized
service discovery with guarantees. We use a peer-to-peer net-
work based on the distributed hashtable Chord that provides
a structured overlay network in order to avoid flooding the
whole network. Service descriptions are decomposed into portions
which can be efficiently distributed and retrieved. We propose
a way to evaluate our protocol by running simulations in
comparison with a straightforward way of achieving the same
goal in an unstructured, Gnutella-like network.

K EYWORDS: SERVICE DISCOVERY, PEER-TO-PEER, DIS-
TRIBUTED HASHTABLE

I. I NTRODUCTION

In the recent years the Web has changed from a rather
consumer-oriented to a consumer-and-producer environment.
Providing a service is meanwhile understood nearly as usual
as consuming a service due to the empowerment of the edge
of the Internet. Services are offered by numerous nodes in a
decentralized way and service providers may join or leave at
will. Examples cover peer-to-peer (P2P) file sharing systems
in which every peer offers a service for downloading files by
another peer, software agent systems which allow agents to
be created at different places in order to serve users or other
agents, and Web Services in which any node with an HTTP
server running can create its own Web Service and offer it to
other nodes in the Web.

All these services are of little use until they are advertised to
service consumers by—hopefully computer-readable—service
descriptions including their type of service as well as parame-
ters describing service details. This is done by first publishing
service descriptions at so-called registries and second allowing
service consumers to query the registry database for services
matching certain criteria. The latter may be divided into
looking up a certain service with a known identifier which
is called name service and searching for services with certain
attributes which is known as directory service [1].

Usually registry services are located at central, well-known
places running on nodes dedicated only for this task. While
being algorithmically simple, this solution has a couple of
drawbacks: First of all central solutions generally do not scale.
Server load linearly grows with the number of clients making it
necessary to replicate servers whenever network size increases

significantly. Further, any server is a single point of failure
making the service unavailable when it is disconnected from
the network. Apart from that, central or hierarchical structures
for registries do not always correspond to the dynamic forma-
tion process of service providing environments. Next, servers
have to be set up and managed in order to allow collaboration.
This represents a barrier for spontaneous collaborations which
might inhibit ad-hoc formation and should be avoided. In
some situations it may be reasonable to interconnect multiple
registries which have formed apart of each other. This should
be done rather in a coequal than in a master-servant setting.
Another example is grouping of users which share a common
interest or only want to cooperate in their closed group. In
these situations a distributed realization of a registry service
is more feasible than picking a single node or a fixed set of
nodes to provide this task.

There exist means of connecting multiple registries in non-
hierarchical fashions. For example in the agent world of FIPA-
conforming agent platforms [2] the so-called directory facili-
tators can be federated, so that query requests are forwarded
to each other with a given TTL (time to live). As another
example, UDDI allows connection of multiple registries hi-
erarchically or in a peer-like fashion which is called registry
affiliation [3]. Those approaches to connect registries may be
compared with unstructured, pure or hybrid P2P systems like
Gnutella [4] and FastTrack [5]. They form decentralized nets
of all nodes, respectively specialized super nodes, and forward
queries with a given TTL. The problem of these approaches is
that—unless a query traverses all (super) nodes in a network by
the means of flooding—no guarantees can be given for finding
a certain resource. Though this might not be a problem in
file sharing systems, it is more than just an inconvenience for
service-oriented environments which require precise results.

Our approach aims to decentralize the registry in a struc-
tured way in order to provide the guarantee of finding any
registered service description matching a given query. This
is done by forming an overlay network using the distributed
hashtable Chord [6] and distributing the service information
in it so that it can be queried by contacting only a logarithmic
number of nodes.

Figure 1 gives an example of a registry network that makes
use of our protocol. The registry service is distributed among
the nodes in the cloud while the nodes outside of it just
make use of it without contributing to it. The circles denote
administrative boundaries, e.g. of corporations or universities.

Fig. 1. Network consisting of nodes providing the registry service (inside
cloud) and those that only make use of it (outside cloud). Nodes in circles
stand for nodes belonging to administrative units.

II. REQUIREMENTS ONDISCOVERY SERVICES

The requirements on a discovery service imposed by service
providers and consumers can be divided into functional and
non-functional requirements.

Functional requirements of service providers comprise con-
venient methods and data structures to publish, modify and
unpublish their services. Service descriptions, that service
providers want to publish, consist of (name, value) pairs
describing the attributes of services to publish. Values of
service descriptions can contain primitive data types like
integer, string, etc., complex data types, or sets of one of
these types. Complex data types are composed of (name,
value) pairs as a service description. A discovery service must
therefore allow publishing, modifying, and unpublishing tree-
like complex data structures. There must not be any restrictions
on the number of attributes a service description can consist
of.

Service consumers querying a discovery service need meth-
ods to look up services and a convenient data structure to
describe templates for services, which they are looking for.
This data structure must be defined analog to the one used for
service descriptions. The discovery service must returnall ser-
vice descriptions matching a query giving service consumers
the guarantee to find any available service. Further it should
give users the possibility to specify an upper bound for the
number of returned services and provide a means for iterating
over them.

Beyond functional requirements the discovery service has
to satisfy non-functional requirements. Some of these are
independent of applying a discovery service in a distributed
manner. These are e.g. low response time, reliability, and

scalability (depending on the number of services published
and number of queries). Some requirements apply only to a
distributed discovery service (especially in a P2P environment)
as, for example, low bandwidth consumption and low number
of messages for publishing, modifying, unpublishing, and
querying of services.

III. OVERLAY NETWORK - REQUIREMENTS AND

ASSUMPTIONS

The non-functional requirements directly impose require-
ments on the underlying P2P overlay network as the guarantee
to find all available services does, as well. The overlay network
has to allow storage and retrieval of service descriptions.
Therefore two types of P2P networks could be applied:
unstructuredand structurednetworks. Unstructured P2P net-
works like Gnutella [4] and FastTrack [5] would achieve this
goal by creating local indices on all nodes and forwarding
queries through the network until either a result was found, or
a given TTL value has run off. Advantages of this approach are
simplicity of algorithms and arbitrary complexity of queries.
But drawbacks which make this solution unfeasible for a
discovery service are bad scalability and incapability of giving
guarantees whether a certain service is available, or not.

Structured P2P networks like Chord [6] take another ap-
proach. Here, the index used for service discovery is already
distributed in the network when registering the service. This
is done in a way that queries can be step-wisely routed to the
node which is responsible for holding the required information.
Advantages of structured overlays are efficient lookups which
only involve a logarithmic number of nodes in the network.
Further, they guarantee that any query can be answered even
if service provider and consumer reside at two distant edges of
the network. A drawback is the requirement of maintenance of
a certain network structure in case of joins, leaves, or failures
of nodes, which usually is more expensive than in unstructured
P2P networks. Another problem is that distributed hashtables
do not support searching by themselves, but only looking up
data bound to concrete hash values.

The main argument for our approach to use a structured P2P
network is that queries are guaranteed to be answered without
having to flood the whole network. It has to be evaluated
by simulation whether maintenance costs play a crucial role
compared to costs of publishing and querying. Choosing the
right data structure to publish and retrieve service information
in the network is one of the crucial tasks of our approach.

In Chord [6] any piece of information has to be uniquely
identifiable by a key. This is achieved by applying a hash
function on any data which is to be stored in the network.
This key is used for storage as well as for retrieval of data.
Consequently, in order to find any information the full key has
to be known in advance assuming that one has to know exactly
what to look for. Searching capability has to be implemented
separately of this lookup mechanism or by using additional
data structures, e.g. inverted indices. All nodes in the overlay
network are assigned unique identifiers (ID) of the same key
space. Any node is responsible for the data keys within the

range of the next smaller node ID in the network up to its own
node ID. Therefore every node has to know its predecessor
which is propagated and updated by maintenance messages.
The ordering of nodes in successor-predecessor relations forms
the so-called Chord ring. In addition to predecessor refer-
ences every node stores a so-called finger table—a skip list
containingi references to nodes of which the node IDs are
at least thei-th power of two greater than their own node
ID. By this, queries can be forwarded at least half the way
closer to their destination in every step only needing to know
a logarithmic number of nodes in the network. This leads to
logarithmic performance for storing and retrieving any item
stored in the ring. Whenever nodes join or leave the network
routing information have to be updated. This is done by a
stabilization protocol which has been proven to be correct even
in case of multiple node joins or leaves at the same time [6].
In order to prevent data loss because of node failures data
should be replicated on multiple nodes in a network, e.g. by
copying it on thek next nodes following a node responsible
for a specific data item.

IV. D ESIGN OF THE DISCOVERY SERVICE

The design of the proposed P2P discovery service is covered
in this section. This service consists of three layers on top of
which an application may be built. The first and lowest layer
is the transport layer, on top of which the second layer, the
P2P overlay network Chord resides. The third layer is the local
discovery service layer which is implemented above the Chord
layer. This layer provides methods to publish, unpublish,
modify, and query service descriptions. It also maintains a
local data structure which stores all service descriptions that
have been published by the local node. Parts of the service
discovery layer rely directly on the transport layer for direct
communication with other nodes of which the addresses are
already known by the service discovery layer. Finally, an
application may be built on top of the service discovery layer.
The architecture is shown in figure 2.

Fig. 2. Architecture of the P2P discovery service.

These layers are intended to be implemented on every node
in the discovery service network. Hence, every participating
peer can publish, unpublish, and modify service descriptions
that it wants to provide to and query service descriptions
provided by other peers. Alternatively, it is possible that
services can be provided to (and provided by) nodes not
directly participating in P2P discovery service. This is done

by connecting to one or more nodes which are part of the
discovery service.

The following sections show how service descriptions are
published, unpublished, modified, and queried with help of the
provided architecture.

A. Publishing service descriptions

The service discovery layer includes a data structure for
representing aservice description. Within this data structure
various attributes describing a service can be set. These at-
tributes consist of (name, value) pairs. Values can be primitive
or complex types, or sets of one primitive or complex type.
Primitive types include integer, string, etc. Complex types may
contain primitive or complex types as well as sets of them as
subtypes. In this way a tree-like structure of types can be built
(e.g. figure 3).

(type = ticketservice;
url = (protocol = http;

host = 81.200.194.40;
port = 8080;);

owner = DB;
languages = {german,

english,
french};

)

Fig. 3. Example of a service description.

For each service description to be published aregistration
ID is created which can later be used to uniquely identify the
published service. Further, keys are generated for the attributes
of the service description:

• The keys for attributes with primitive type are generated
by calculating the hash value of the concatenation of
name and value. For each of these keys a so-calledservice
referenceconsisting of the local node’s address and the
registration ID is stored in the Chord layer using the
calculated hash value as key.

• Attributes having a complex type are decomposed into
their subtypes. For each of these a service reference is
stored in the Chord layer. In order to retain the tree-like
structure of the service description the names of attributes
of a complex type are preceded by the name of the
complex attribute itself. By this each attribute is assigned
a fully qualified name which allows unique identification
of attributes in a description.

• At last, attributes consisting of a set of types are stored
one by one as described above. The names of the items in
the set are also preceded by the attribute name of the set.
The order of values in a set is not mapped to Chord. If
such an order is desired, a complex type should be used
instead.

The presented mapping of service descriptions to Chord
keys preserves the hierarchical structure of attributes, but
discards the ordering of its elements. Figure 4 shows an

example of the keys generated for the service description of
figure 3.

"type.ticketservice" -> ADBCB6...17
"url.protocol.http" -> 801D4F...F0
"url.host.81.200.194.40" -> 922E25...59
"url.port.8080" -> 9F5A36...23
"owner.DB" -> 71A8D1...30
"languages.german" -> A36923...42
"languages.english" -> BE2CD9...AD
"languages.french" -> B81C8B...D9

Fig. 4. Example of keys for a service description.

After service references have been stored within the Chord
layer for each attribute, the service description itself is stored
in a local data structure of the service discovery layer. The
generated registration ID is returned to the application for later
referral to the service description.

B. Querying service descriptions

In order to search for a service, a node has to know the
schema—the tree-like hierarchy of attribute names—of the
service description of the service it is looking for and at least
one value of a service attribute. As with publishing of services
the attribute types may be primitive or complex types as well
as sets of these. In order to permit multi-attribute queries,
templatesare used which incorporate all attributes belonging
to one query.

Querying for all services matching a given template is done
by choosing one of the attributes by random, calculating the
hash key for it, and looking up all available service references
for it in the Chord layer. Performance can be improved, if
only the service references for the least frequent key are
queried which requires an additional data structure maintaining
keyword frequency (e.g. see [7]). The node addresses of
the returned service references are then used to retrieve the
complete service descriptions. It can be tested locally, if
these descriptions also match the other attributes contained
in the query template. Only service descriptions matching all
attributes of the template are returned to the application layer.

From this description follows that templates may only
contain complete (name, value) pairs. It is not possible to
support wildcard usage in the value part of an attribute,
because searching for them cannot be done efficiently in the
Chord layer. Searching for ranges of values is not possible at
the moment, neither. Both issues might be addressed in future
work.

C. Modifying and unpublishing service descriptions

Sometimes it may occur that a previously published service
description has to be modified. Therefore the attributes which
have changed or have become obsolete are removed from the
Chord layer and attributes which are new or have changed
are added to it. This is done by calculating the keys for the
affected attributes and delegating the addition or removal of

service references to the Chord layer. Since the content of the
service references stays the same the unchanged attributes are
not affected by the modification. This procedure ensures that
there is only network traffic generated for changed attributes.

If a service description has to be unpublished, the service
references belonging to the affected service have to be deleted.
Therefore the keys of all service attributes are generated and
passed to the Chord layer for removal. Further, the service
description is removed from the local service description data
structure.

D. Handling departure and failure of nodes

Nodes joining and leaving the P2P network as well as
crashing nodes are handled by the Chord layer, transparently
to the service discovery layer. But the service discovery layer
has to take care of the content which is stored in the Chord
layer. When a node leaves the network, the service discovery
layer of that node has to ensure that all service references
referring to the leaving node are removed from the underlying
Chord layer.

If a node crashes, the service references of the crashing
node have to be removed, too. There are three possibilities to
achieve this:

• A leasing concept could be employed making every node
responsible to renew the leases for its service references
in a regular interval. Unfortunately, this would lead to
the same number of messages as if all service descrip-
tions would be published again, but would be repeated
whenever leases have expired.

• A node would recognize that a node has crashed while
querying for a service description. This is why all nodes
storing possible relevant service descriptions have to
be contacted directly. If a node does not respond to
this request, the querying node can remove the affected
service reference from the Chord layer. This solution
would lead to lots of properties being stored in the Chord
layer which are never used for a query.

• Service descriptions could be replicated by the publish-
ing node tok other nodes. This could for example be
achieved by exploiting the routing information used by
the Chord layer for internal replication purposes. If one
of these nodes detects that a publishing node has crashed,
it could initiate the removal of all service references pub-
lished by the crashed node. Though being most complex
this solution is preferable, because it ensures that service
descriptions are up-to-date without producing significant
traffic.

V. EVALUATION

Simulation of our protocol is one possible means to eval-
uate performance of it in comparison to other protocols, i.e.
those which are not based on structured P2P networks like
distributed hashtables. A protocol suitable for comparison
must fulfill the same functional requirements as we stated
above. That includes publishing service descriptions as well
as sending queries containing service templates which are

guaranteed to be answered byall matching services in the
network. Therefore we assume a Gnutella-like network in
which service descriptions are stored locally at each node and
queries are sent through the network by flooding in order
to achieve the same guarantees as our protocol does. The
definitive disadvantage of this approach is that flooding is
inherently inefficient. But an advantage of the Gnutella-like
protocol may be that one query message can contain a template
with an arbitrary number of attributes of a potential service.

Usage of the discovery service does not depend on one
of these two protocols. Therefore assumptions must be made
on network size and dynamics, e.g. arrival and uptime of
nodes, and on service usage, e.g. frequency of publishing
and querying of services and number and kind of attributes
contained in service descriptions and query templates. The
data to be measured and compared in the simulation can be
divided into quality measures, e.g. response time of queries,
and impacts for the nodes, e.g. amount of storage, number of
open connections, and traffic volume. Since the setting is the
same for both protocols we expect our protocol to outperform
the Gnutella-like approach.

As simulation environment ns-2 [8] may be used which is a
discrete event simulator working on packet level. In addition to
this, GnutellaSim [9] might be useful which is an open-source
library for simulation of P2P protocols and can be run with
ns-2. The Gnutella protocol provided by GnutellaSim has to
be modified to achieve unbounded flooding which is required
for the comparison. Further an implementation of our protocol
as well as a Chord layer has to be added to the library.

VI. RELATED WORK

Recently, some work has been done on enabling searching
capabilities in P2P systems based on distributed hashtables
which goes beyond looking up keys. [10] proposes a way
to apply inverted indices to use for keywords in file sharing
applications. [11] extends this model by adding mechanisms
to improve query efficiency in such a system, namely query
ordering, bloom filters, popularity information, and truncated
results. [7] introduces a keyword dictionary and improves
query efficiency by so-called keyword fusion. All this work has
been applied to searching for multimedia data in file sharing
systems rather than for service discovery in service-oriented
environments.

In our approach we assume service providers and consumers
to have a common schema for describing services. That means
that service types and their attributes are known before using
the registry service. In contrast to this [12] proposes a means to
add semantics into registry services, for example by returning
similar services which do not exactly match the queried service
description, by using ontologies.

VII. C ONCLUSION

In this paper we proposed a protocol for decentralized
service discovery with guarantees. We used a P2P network
based on a distributed hashtable that provides a structured
overlay network in order to avoid flooding the whole network.

Service descriptions are decomposed into portions which can
be efficiently distributed and retrieved. We proposed a way to
simulate our protocol by comparing it with a straightforward
way of achieving the same goal in an unstructured network.

VIII. C URRENT AND FUTUREWORK

Currently we are working on simulating our protocol ac-
cording to the assumptions made in section V. Moreover a
prototype for service discovery in a FIPA-conforming agent
platform is under development. We also aim to improve
efficiency of our protocol in the future and aim to incorporate
means like a frequency dictionary of service attributes in the
style of fusion dictionary [7] in order to decrease traffic of
multi-attribute queries. Further we intend to support wildcard
and range queries in the future. At last, security issues have
to be taken into consideration, since any adversary would be
able to add, modify, or delete service descriptions at will.

REFERENCES

[1] G. Coulouris, J. Dollimore, and T. Kindberg,Distributed Systems:
Concepts and Design, 3rd ed. Addison-Wesley, 2001.

[2] FIPA Agent Management Specification, Foundation for Intelligent Phys-
ical Agents (FIPA), March 2004.

[3] Introduction to UDDI: Important Features and Functional Concepts,
Organization for the Advancement of Structured Information Standards
(OASIS), October 2004.

[4] The Gnutella Protocol Specification v0.4. [Online]. Available:
http://www9.limewire.com/developer/gnutellaprotocol0.4.pdf

[5] A. Oram, Ed.,Peer-to-Peer: Harnessing the Benefits of a Disruptive
Technology. O’Reilly, March 2001.

[6] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: A scalable peer-to-peer lookup
protocol for internet applications,”IEEE/ACM Trans. Netw., vol. 11,
no. 1, pp. 17–32, 2003.

[7] L. Liu, K. D. Ryu, and K.-W. Lee, “Keyword fusion to support efficient
keyword-based search in peer-to-peer file sharing,” inCluster Computing
and the Grid, 2004. CCGrid 2004. IEEE International Symposium on,
April 2004, pp. 269–276.

[8] [Online]. Available: http://www.isi.edu/nsnam/ns/
[9] Q. He, M. Ammar, G. Riley, H. Raj, and R. Fujimoto,

“Mapping peer behavior to packet-level details: A framework for
packet-level simulation of peer-to-peer systems,” in11th IEEE/ACM
International Symposium on Modeling, Analysis and Simulation of
Computer Telecommunication Systems, 2003. [Online]. Available:
http://csdl.computer.org/comp/proceedings/mascots/2003/2039/00/2039toc.htm

[10] P. Reynolds and A. Vahdat, “Efficient peer-to-peer keyword searching,”
in Lecture Notes in Computer Science, vol. 2672. Springer-Verlag
GmbH, 2003, pp. 21–40.

[11] T. Lu, S. Sinha, and A. Sudan, “Panaché: A scalable
distributed index for keyword search.” [Online]. Available:
http://www.pdos.lcs.mit.edu/6.824-2002/projects/

[12] D. Elenius and M. Ingmarsson, “Ontology-based service discovery
in p2p networks,” in Proceedings of the MobiQuitous’04
Workshop on Peer-to-Peer Knowledge Management (P2PKM 2004),
Boston, MA, USA, August 22, 2004, 2004. [Online]. Available:
citeseer.ist.psu.edu/711664.html

