
Building Orchestrations in B2Bi – The Case of
BPEL 2.0 and BPMN 2.0

Jörg Lenhard and Guido Wirtz

Distributed and Mobile Systems Group, University of Bamberg, Germany
{joerg.lenhard,guido.wirtz}@uni-bamberg.de

Abstract. Various approaches for service-oriented business-to-business
integration (B2Bi) rely on a top-down development methodology. The
starting point is a choreography model which is subsequently partitioned
into multiple orchestrations. Most current approaches use the Web Ser-
vices Business Process Execution Language (BPEL) for implementing
the latter. At the same time, a plethora of other languages, such as
Business Process Model and Notation (BPMN) 2.0 process diagrams, is
available. As integration partners are free to select the orchestration lan-
guage of their choice, it should be easy to integrate different orchestration
languages with current choreography technology. Language transforma-
tion, starting from a suitable format, is a means to achieve this. In this
paper, we assess BPEL 2.0 and BPMN 2.0 process diagrams for their
suitability for this transformation in a services-based B2Bi setting using
a requirements framework identified through a literature study.

Keywords: Orchestration, BPEL 2.0, BPMN 2.0, B2Bi

1 Introduction

Over the last years, the influence of service-orientation in the implementation
of interorganizational processes has grown rapidly. Many approaches1 for imple-
menting such processes employ a combination of choreography and orchestration
models [6, 19] to capture different viewpoints on an enterprise-crossing business
process. Top-down approaches refine the first into a set of the latter which there-
after is implemented at each partner’s side. A variety of languages has emerged,
and is continuing to do so, on both levels of abstraction. Integration among the
two types of languages and an easy translation from a choreography to a set of
orchestrations is seen as a core issue [4].

Although BPEL [16] is widely used in these approaches for implementing
orchestrations, it is facing rising competion by other languages, such as BPMN 2.0
process diagrams [17] or the Windows Workflow Foundation (WF) [3]. Conse-
quently, an integration partner may choose to implement her orchestration not in
BPEL, but in any other orchestration language, using the derived orchestration,
which with current approaches mostly is a BPEL process, only as blueprint.
1 Some examples, without claiming to be complete, are: [4, 8, 14,18,23,30]



In this case, there is still a considerable gap between a BPEL process derived
from a choreography and the final running orchestration. For instance, target
languages may rely on a different (i.e., graph-based or block-structured [11]) exe-
cution model with a differing level of expressiveness. Bridging this gap manually,
which is the current option, it is easy to introduce problems that hinder later
execution. Behavioural incompatibilities that were eliminated using model check-
ing techniques may be reintroduced and adjustments to the original interfaces
and message definitions that arise from the limitations of the final execution
platforms may become necessary. Here, an automatic transformation from an
orchestration derived from a choreography model to orchestrations implemented
in other languages can help. The idea is to not to compile choreography models
to an executable artifact tailored to a specific execution platform in a single step,
but to provide an artifact that can be automatically transformed to a variety
of different types of languages and platforms, and also be executed directly. By
automating this transformation step, it would be possible to:

1. Use model checking and related techniques [27] to ensure that no behavioural
incompatibilites are introduced during the transformation.

2. Leverage the information of what execution platforms are ultimately used and
will be communicating with one another to avoid pitfalls and communication
problems known for these platforms2 and perform optimizations such as the
configuration of the most efficient communication binding known to exist
among the platforms.

The starting point of this functionality is a suitable format to which choreography
models are compiled and from which such a transformation is possible in the
first place. The aim of this paper is to deliminate criteria (requirements) that
are essential for such a format and which can be used to evaluate the suitability
of a language, as well as to use these criteria to assess two languages that are
natural candidates for this kind of task. BPEL could be seen as such a format
and most researchers use it because of its status as de-facto standard; A more
recent option is BPMN 2.0 process diagrams [13].

The requirements are identified through a literature study. Since the afor-
mentioned format is to be used for model transformation and optimization
in service-oriented top-down B2Bi, the requirements are derived from relevant
sources in the B2Bi domain, service composition languages and transformation
of process models that reside on the same level of abstraction3.

Furthermore, we assess the support of BPEL 2.0 and BPMN 2.0 process
diagrams for the identified requirements and discuss the evaluation. The outcome
suggests that BPMN 2.0 process diagrams are more suitable for this type of
application.

2 For example known problems among Java-based and .NET-based Web Services [25].
3 This is called horizontal transformation [15].



2 Related Work

Approaches for service composition using choreography and orchestration tech-
nology have attracted considerable interest. Most of these approaches (e.g.
[4, 8, 14, 18, 23, 30]) rely on BPEL as the target language to which choreog-
raphy models are compiled. Although being widely supported, BPEL is more and
more rivaled by other languages [13], both based on standardization initiatives,
such as BPMN 2.0 [17], or proprietary environments, such as WF [3]. Just as for
BPEL, engines for executing orchestrations built in these languages are available.

There are many studies that explicitly specify and assess requirements for
service composition languages, B2Bi, or model transformation with varying
design goals. In the area of service composition, focus lies on choreography
languages [4, 23]. In this paper, we center on orchestration languages instead,
but take into account these studies, where requirements for choreographies and
orchestrations intersect. The requirements defined in [4] concentrate on language
expressiveness. [22,23] on the other hand, take B2Bi-related requirements into
account. General requirements for process languages and requirements related to
horizontal transformation of these languages can be found in [7,15,29]. In this
paper, we extract and unify the requirements from the preceding studies that
are relevant to horizontal transformation of orchestration languages in B2Bi.

An assessment of BPEL 2.0 and BPMN 1.1 for parts of these requirements can
be found in [4]. In [10], the requirements from [4] are used to assess BPMN 2.0 col-
laboration and choreography diagrams. Here instead, we concentrate on BPMN 2.0
process diagrams with the addition of participants, use an extended set of
requirements and a different design goal; that is the assessment of orchestration
instead of choreography capabilities.

3 Requirements for Orchestration Languages in B2Bi

Myriads of requirements could be taken into account when considering either
B2Bi, service composition or language transformation and a vast amount of
literature on these topics is available with varying design goals. We do not intent
to start from scratch and therefore extract common requirements from several
influential studies of recent years that did explicitly post such requirements and
which match well our domain and design focus. Like in any literature study, this
selection of sources is biased to some extent by our knowledge and we do not
claim the completeness of the requirements listed here.

The requirements are sorted in four groups: (i) General requirements, (ii)
B2Bi-related requirements (iii) interaction-related requirements and (iv) derived
requirements. The final group does not originate from the requirement sources,
but is derived in the context of this study.

I. General requirements:
R1 Support for common control-flow structures: An orchestration language must

include a suitable amount of control-flow structures to allow for a direct
implementation of domain relevant scenarios. This requirement is explicitly



stated in [7, 15,22,23]. Assessing languages for their support for control-flow
patterns which describe such common structures can be used as benchmark
for this requirement [28].

R2 Mechanism for hierarchical decomposition: A key feature for dealing with
the complexity of realistic orchestrations is a mechanism for hierarchical
decomposition. The necessity of this feature is stated in [7, 15,22,23].

R3 Data handling mechanisms: Just as for control-flow structures, appropriate
mechanisms for defining, transfering, and manipulating data structures must
be in place [4, 7, 15,22,23]. This requirement can be evaluated by assessing
pattern support as well [20].

R4 Exception handling mechanisms: Being executable, orchestrations must not
only deal with best-case scenarios, but take into account erroneous circum-
stances that may arise during execution. This requirement is backed up by
[4,7, 22,23]. It can also be assessed using pattern-based analysis [21].

R5 Extensibility: An orchestration language should be extensible to allow for
an easy adaptation and the introduction of new or modified constructs to
support use cases with specific needs [7, 22,23].
II. B2Bi-related requirements:

R6 Transactions: An important primitive in enterprise computing is transactional
integrity of interactions. For instance, the reliable transmission of business
documents is crucial and a common means to this end are transactions. An
orchestration language should provide mechanisms to denote transactional
contexts during process execution [7, 22,23].

R7 Quality of service (QoS): Several nonfunctional properties, esp. QoS param-
eters, are vital in B2Bi. These are authentication, message encryption and
signatures, non-repudation of message exchanges and time constraints. An
orchestration language should provide explicit mechanisms to express these
properties [4, 22,23].

R8 Standards: In the B2Bi setting, it is not possible to enforce technologies on
different independent partners. A higher degree of interoperability is likely
by relying on essential standards [22,23].
III. Interaction-related requirements:

R9 Message correlation: During execution, multiple orchestration instances run
in parallel. To support a correct routing of messages by an engine, an orches-
tration language must provide mechanisms for message correlation [4, 22, 23].
As before, this aspect can be evaluated using patterns [1].

R10 Service selection and reference passing: In realistic interaction scenarios, not
all communicating parties may be known at design time. Instead, partner
references are transfered in messages and are bound at run-time [4].

R11 Multi-lateral interaction: Choreographies may consist of more than two part-
ners. Consequently, orchestrations must be able to represent and communicate
with multiple different parties [4].
IV. Derived requirements:

R12 Contract-first development and integration with choreography approaches:
It is a general engineering best practice to define interfaces or contracts



before implementing them. This is inevitable in a top-down development
approach. Orchestration languages therefore must support contract-first
development4. [4,23] specify that choreography languages must easily integrate
with orchestration languages. Also the reverse is important: The applicability
of an orchestration language in top-down approaches should be demonstrated.

R13 Web Services and XML: Choreographies should be technology-independent
[4,23]. This does not apply to orchestrations, which need to be executable.
Consequently, they should work with contemporary communication and
integration technologies, most notably Web Services and SOAP. To allow
for easy processing and transformation of orchestration models, languages
should provide a XML serialization format [7, 15,22,23].

4 Assessment of BPEL 2.0 and BPMN 2.0

In the following, BPEL 2.0 and BPMN 2.0 process diagrams are assessed for
their support for the requirements. We state whether a requirement is supported
directly (+), partially (+/-) or not in a direct fashion (-). This trivalent measure
is relatively simplistic and subjective to a certain extent. Although enhanced
alternatives do exist [12], it is used extensively [4, 5, 10, 20, 21, 28, 31]. For that
reason and the space constraints of this paper, we use the above measure.

Assessment of BPEL 2.0: A detailed analysis of the control-flow capacity of
BPEL can be found in [12]. BPEL 2.0 supports a range of control-flow structures
and block-structured and graph-oriented control-flow definition. Given typical
B2Bi use cases5 generally only require simple control-flow constructs [24], we
consider this as evidence for the support of R1. BPEL 2.0 provides no explicit
construct for hierarchical decomposition; that is, no direct notion of a subprocess6.
It is possible to work around this requirement using nested scopes or Web Service
invocation of another BPEL 2.0 process, which qualifies as partial support for R2.
Compensation and try-catch constructs are present for exception handling and
XML Schema and XPath 1.0 for data definition and manipulation. Although closer
evaluations are only present for BPEL 1.1, we consider this as support for R3 and
R4. BPEL 2.0 allows to extend the language with new engine-specific activities
using extensionActivity and extensionAssignOperation, thereby fullfilling
R5. As for the B2Bi requirements, BPEL 2.0 has no built-in mechanisms for
scoping transactions, which must be implemented using additional standards such
as WS-Coordination and WS-AtomicTransaction. Policies using these standards
can be attached to operations at the WSDL-level. This policy-based approach
4 This may seem obvious. Nevertheless, there are languages, such as Windows Workflow

in its current revision 4 [3], that do not support contract-first development.
5 Examples of such use cases are the RosettaNet Implementation Guides:

http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/
RosettaNetImplementationGuides/tabid/2985/Default.aspx

6 Such a structure is introduced by the BPEL-SPE specification [9], a BPEL extension
for subprocesses. However, this specification is not widely adopted and thus we limit
ourselfs to the BPEL specification [16] and related WS-standards in this evaluation.

http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx


enhances the flexibility and composability of the Web Services stack. However, in
the case of B2Bi, it would be reasonable to insert the notion of transactions into the
process itself7. BPEL 2.0 directly provides only quasi-atomic transactions through
compensation [2]. Altogether, we consider it to provide only partial support for
R6. The same applies to QoS requirements which cannot be represented directly,
but with the help of additional standards, such as WS-ReliableMessaging and
WS-Security. Moreover, BPEL’s support for time constraints is fairly limited
[12]. This results in partial support for R7. As BPEL is an OASIS standard, it
fullfills R8. BPEL 2.0 uses key-based correlation with correlationSets that can
be initialized and used by messaging activities, thus fullfilling R9. References can
be passed and set via WS-Addressing endpointReferences which are first-class
citizens of the specification. As this is only an implict way of service selection, it is
considered as partial support for R10 [4]. Multi-lateral interaction is possible using
multiple partnerLinks, fullfilling R11. The applicability of BPEL in top-down
approaches has been proven in multiple settings [8, 14,18,23,30], fullfilling R12.
Finally, the language is built on Web Services and provides a XML format (R13).

Assessment of BPMN 2.0: A discussion on control-flow pattern support
is part of the BPMN 2.0 specification [17], granting support for R1. This is not
the case for data or exception handling patterns, but here results from an older
revision are applicable [21, 31], fullfilling R3 and R4. R2 is directly supported
using subProcesses and callActivities which are considerably more powerful
than BPEL scopes as they allow for a reuse of process definitions without having
to resort to external Web Service invocation. BPMN 2.0 comes with an extension
mechanism, based on extension and extensionDefinition, that can be used
to define additional elements at the level of existing elements. For instance, by
extending a task with additional attributes, it is possible to provide new function-
ality. This mechanism fullfills R5. A special type of subProcess, transaction,
can be used to demark a transactional context in a process to provide a consistent
outcome to the execution of a set of activities and allows for the configuration
of the coordination protocol applied (typically WS-AtomicTransaction or WS-
BusinessActivity). Additionally, hazards mark events in a transaction that
enforce its immediate termination without compensation, but without termi-
nating the complete process. Such scope-termination is not possible in BPEL.
Altogether, this fullfills R6. Concerning QoS, BPMN processes are limited to
simple time constraints in the same fashion as BPEL. Although it would be
possible to annotate such configurations using properties, this only qualifies for
partial support with respect to R7. BPMN is an OMG standard, satisfying R8.
BPMN 2.0 supports key-based and, in contrast to BPEL 2.0, context-based corre-
lation. This is sufficient for R9. Participants can be used to represent interaction
partners of a process, thereby fullfilling R11. Service selection is no first-class
member of the BPMN 2.0 specification. However, BPMN 2.0 allows to define
endPoints, which may be comprised of WS-Addressing endpointReferences.
It is possible to reference these endPoints in a participant and reassign them

7 For instance, this is also the strategy followed by [26]. There, policies are introduced at
the level of scopes or partnerLinks, resulting in coordinated scopes / partnerLinks.



during process execution. This resembles the solution of BPEL. Therefore, we
conclude that R10 is partially supported. The use of BPMN executable processes
as orchestrations is just in its start. Nevertheless, in the BPMN environment, they
are integrated into diagrams for modeling choreographies, so their applicability
in a top-down development approach seems given (R12). Finally, BPMN 2.0
comes with a XML serialization format and in the context of messaging ac-
tivities and tasks, Web Services are considered the default technology (R13).

Table 1. Assessment of Languages

Requirement BPEL 2.0 BPMN 2.0
R1 Control-flow structures + +
R2 hierarchical decomposition +/- +
R3 Data handling + +
R4 Exception handling + +
R5 Extensibility + +
R6 Transactions +/- +
R7 QoS +/- +/-
R8 Standards + +
R9 Correlation + +
R10 Reference passing +/- +/-
R11 Multi-lateral interaction + +
R12 Choreography integration + +
R13 XML, Web Services + +

5 Conclusion and
Future Work

The results are summarized in Ta-
ble 1. Both languages provide a
strong degree of support for the
requirements at hand, which is
not surprising and the reason they
were selected in the first place.
Here, nuances in the support are of
interest. As there is a more power-
ful mechanism for hierarchical de-
composition and a concept for de-
marking transactions in BPMN 2.0 processes, they are considered as more suitable
for the output of B2B-choreographies. To levitate existing deficiencies, it would
be helpful to extend process elements with explicit notions for QoS. Also, the
definition of mappings to further languages, such as WF, is promising.

References

1. A. P. Barros, G. Decker, M. Dumas, and F. Weber. Correlation Patterns in
Service-Oriented Architectures. In FASE, pages 245–259, Braga, Portugal, 2007.

2. A. P. Barros, M. Dumas, and A. H. M. ter Hofstede. Service Interaction Patterns.
In BPM, pages 302–318, Nancy, France, September 2005.

3. B. Bukovics. Pro WF: Windows Workflow in .NET 4. Apress, June 2010. ISBN-13:
978-1-4302-2721-2.

4. G. Decker, O. Kopp, F. Leymann, and M. Weske. Interacting services: From
specification to execution. Data & Knowledge Engineering, Elsevier, 68(10):946–
972, 2009.

5. G. Decker, H. Overdick, and J. Zaha. On the Suitability of WS-CDL for Choreo-
graphy Modeling. In EMISA, pages 21–33, Hamburg, Germany, October 2006.

6. R. Dijkman and M. Dumas. Service-oriented Design: A Multi-viewpoint Approach.
International Journal of Cooperative Information Systems, 13:337–368, 2004.

7. S. I. Fernando, D. Creager, and A. Simpson. Towards Build-Time Interoperability
of Workflow Definition Languages. In SYNASC, Washington DC, USA, 2007.

8. B. Hofreiter and C. Huemer. A model-driven top-down approach to inter-
organizational systems: From global choreography models to executable BPEL. In
Join Conf CEC, EEE, 2008.



9. IBM, SAP. WS-BPEL Extension for Sub-Processes – BPEL-SPE, September 2005.
10. O. Kopp, F. Leymann, and S. Wagner. Modeling Choreographies: BPMN 2.0 versus

BPEL-based Approaches. In EMISA, 2011.
11. O. Kopp, D. Martin, D. Wutke, and F. Leymann. The Difference Between Graph-

Based and Block-Structured Business Process Modelling Languages. Enterprise
Modelling and Information Systems Architecture, GI e.V., 4(1):3–13, 2009.

12. J. Lenhard, A. Schönberger, and G. Wirtz. Edit Distance-Based Pattern Support
Assessment of Orchestration Languages. In OTM Conferences, Hersonissos, 2011.

13. F. Leymann. BPEL vs. BPMN 2.0: Should You Care? In 2nd International
Workshop on BPMN, 2010.

14. J. Mendling and M. Hafner. From WS-CDL choreography to BPEL process
orchestration. JEIM, 21(5):525 – 542, 2008.

15. M. Murzek and G. Kramler. The Model Morphing Approach - Horizontal Transfor-
mations between Business Process Models. In BIR, pages 88 – 103, 2007.

16. OASIS. Web Services Business Process Execution Language, April 2007. v2.0.
17. OMG. Business Process Model and Notation (BPMN) Version 2.0, January 2011.
18. C. Ouyang, M. Dumas, A. H. M. ter Hofstede, and W. M. P. van der Aalst. From

BPMN Process Models to BPEL Web Services. In ICWS, pages 285–292, 2006.
19. C. Peltz. Web Services Orchestration and Choreography. IEEE Computer, 36(10):46–

52, October 2003.
20. N. Russell, A. H. M. ter Hofstede, D. Edmond, and W. M. P. van der Aalst.

Workflow Data Patterns: Identification, Representation and Tool Support. In ER,
LNCS, pages 353–368, Klagenfurt, Austria, October 2005. Springer, Heidelberg.

21. N. Russell, W. M. P. van der Aalst, and A. H. M. ter Hofstede. Workflow Exception
Patterns. In CAiSE, pages 288–302, Luxembourg, Luxembourg, June 2006. Springer.

22. A. Schönberger, C. Wilms, and G. Wirtz. A Requirements Analysis of Business-to-
Business Integration. Technical Report 83, Otto-Friedrich-Universität Bamberg,
December 2009. ISSN 0937-3349.

23. A. Schönberger. The CHORCH B2Bi approach: Performing ebBP choreographies
as distributed BPEL orchestrations. In SC4B2B, Miami, Florida, USA, July 2010.

24. A. Schönberger. Visualizing B2Bi choreographies. In 4th IEEE International
Conference on Service-Oriented Computing and Applications. IEEE, 2011.

25. S. Shetty and S. Vadivel. Interoperability issues seen in Web Services. International
Journal of Computer Science and Network Security, 9(8):160 – 168, 2009.

26. S. Tai, R. Khalaf, and T. Mikalsen. Composition of Coordinated Web Services. In
ACM/IFIP/USENIX International Middleware Conference, 2004.

27. W. M. P. van der Aalst, N. Lohmann, P. Massuthe, C. Stahl, and K. Wolf. From
Public Views to Private Views - Correctness-by-Design for Services. In Web Services
and Formal Methods, Fourth International Workshop (WS-FM), Brisbane, 2007.

28. W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow Patterns. Distributed and Parallel Databases, Springer, 14(1):5–51, 2003.

29. D. Vanderhaeghen, S. Zang, A. Hofer, and O. Adam. XMLbased Transformation of
Business Process Models - Enabler for Collaborative Business Process Management.
In XML4BPM, pages 81 – 94, 2005.

30. I. Weber, J. Haller, and J. Mulle. Automated Derivation of Executable Business
Processes from Choreographies in Virtual Organisations. IJBPIM, 3:85–95, 2008.

31. P. Wohed, W. M. P. van der Aalst, M. Dumas, A. H. M. ter Hofstede, and N. Russell.
On the Suitability of BPMN for Business Process Modelling. In Business Process
Management, pages 161–176, Vienna, Austria, September 2006.


	Building Orchestrations in B2Bi – The Case of BPEL 2.0 and BPMN 2.0
	1 Introduction
	2 Related Work
	3 Requirements for Orchestration Languages in B2Bi
	4 Assessment of BPEL 2.0 and BPMN 2.0
	5 Conclusion and Future Work


