
A Multi-Layered Framework for Pattern-Aided
Composite Application Design
Helge Hofmeister

European EAI Department
BASF IT Services n.V.

Brussels, Belgium
Email: helge.hofmeister@basf-it-services.com

Guido Wirtz
Distributed and Mobile Systems Group

Otto-Friedrich Universität Bamberg
Bamberg, Germany

Email: guido.wirtz@wiai.uni-bamberg.de

Abstract— In this paper we describe our viewpoint of designing
composite applications. We introduce an architectural reference
framework that allows for a business process-centred develop-
ment of composites. The framework groups artefacts of similar
abstraction levels as well as concerns at five distinguished layers.
The layers also correspond to phases of a design methodology
and cover the aspects of composite applications from process-
centred orchestration, over transactional coordination to data
transformation and connectivity. Based on the framework this
paper shows as well how different pattern systems can be used
both as design and as analysis patterns in order to facilitate
composite applications’ design.

Keywords: SOA, Reference Architecture, Design Patterns

I. INTRODUCTION

Service-oriented architecture (SOA) is an emerging spirit
that promises to allow for agile software development by re-
using existent functionality. The software applications that re-
uses functionality are called composite applications.
Inherent aspects of service-orientation that should allow for
such a re-assembling of functionality are transparent distribu-
tion of functional entities, modularization and facilitated (re-)
ordering of functions. In this world, distributed functions are
called services. Transparent distribution and modularization
are of course existent and exploited for quite a time1 — even
if the modularization of services in terms of granularity is
different e.g. to object orientation. So the promise of this
approach lies in the facilitated composition of services that
comes with standards as [1] that are process-centred orchestra-
tion mechanisms for web services. Considering orchestration
languages, people started thinking of applying some sort of
business oriented protocol (such as business processes) to
basic services and having automated support for the business
process right away. Even if this a promising area and the work
already carried-out is of good quality, are these ”just” technical
standards and ideal thoughts that need to be applied the correct
way in order to design automated business processes in a good
way.
The quality of a system’s design is partially determined by
the quality of the basic components’ design. Thus, it is

1Even if the transparent distribution is now considered to be cross-
organizational without major extra effort.

important to not only compose services but to compose well
designed services. This is why there exist already sophisticated
definition processes (such as [2]) or quality metrics (such as
[3]) that support the grouping of functionality into services.
But despite of the quality of these approaches, services are,
no matter how good they are designed in terms of functional
or informational cohesion or the degree of inter-service cou-
pling, by definition distributed across organizational boarders,
defined by different people and executed by different agents.
So it is not applicable to expect well-designed services that
are easily to be orchestrated by a business process that is
translated into a service orchestration language (eg. using the
approach of [4]). We consider the SOA approach and all the
benefit of its agility as promising, though. We believe that
business requirements that are expressed by business processes
should not be constrained by incompatibility of services. Our
aim is to provide mechanisms that allow that the requirement
engineering is not constrained by the definition of existing
services.
This is the reason why we propose an architectural framework
that helps to moderate between basic services and business
processes. In order to define the framework, we identified
several aspects that need to be respected in order to bridge
the described gap. Each layer we identified corresponds to
phases of a development methodology that might be applied
when building composite applications. Additionally, each layer
represents both a certain level of abstraction as well as an ideal
thought of technical layers a composite application might be
build of.
We describe how design patterns fit with the describe archi-
tecture. In combination with the hierarchy of layers that is
provided by the architecture, design patterns are supportive in
terms of system design, effort estimation and model driven
development. This is because the set of applicable patterns is
limited on each layer and design decisions effect the set of
available patterns as well.
After presenting related work in section II, we introduce our
architectural framework in section III. The introduction is
followed by the discussion of patterns, how they support the
actual design and implementation of composite applications
(section IV) as well as how design decisions effect the
applicability of related patterns. We close with a summary



and an outlook to future work in section V.

II. RELATED WORK

Most important to our work are multiple patterns that have
been identified in recent research. These are the workflow
patterns presented by van der Aalst et al. [5], the workflow data
patterns by Russel at al. [6], the service interaction patterns by
Barrows et al. [7] as well as the enterprise integration patterns
by Hohpe and Woolf [8]. We analyzed these patterns with
regards to their applicability within our framework.
Not in terms of patterns but in terms of service design are
the work of Reijers [3] and to Feuerlicht [2] important. The
main difference between our work and these service definition
methodologies is that our approach is designed to deal with a
possibly fixed world with pre-defined application services and
business processes.
Multi-layered reference architectures are of course used as
well in the area of service-oriented design. Notably is the
work of Decker [9] who also describes an intermediate layer
between business processes and application services that align
processes and IT. Whilst he is solely focusing on the semantic
gap between processes and services, we additionally introduce
coordination and transaction handling while providing a stan-
dardized execution environment as well.
In the area of mapping workflow descriptions to each other
Dehnert and van der Aalst did some interesting research
[4]. Their approach is to map business process descriptions
onto workflow descriptions using petri-nets. This work is
complementary to our work as it describes how to derive the
fourth level of the presented architecture.

III. ARCHITECTURAL FRAMEWORK FOR COMPOSITE
APPLICATIONS

According to Linthicum, Business Process Integration
Oriented Application Integration (BPIOAI) provides another
layer on-top of existent system integration such as Information
Oriented Application Integration (IOAI) or Service-Oriented
Application Integration (SOAI) (cf. [10]). This means, that
system integration-focused technologies such as eg. JMS
messaging (for IOAI) or HTTP-based web services (for
SOAI) are controlled by a top-level orchestration layer that
implements the business logic. Often, to this business-process
implementation, it is referred to as composite application.
While the composite application implements the business
logic, the used integration technologies solely provide the
abilities of calling application systems that in turn provide
the logic that is orchestrated by the composite application. To
this part, not implementing any business logic, it is referred
to as integration sub-system.
This chapter presents five layers that together form the
complete composite application including the integration
sub-system.

A. Layers of the Architecture

The introduced architectural framework provides several
layers of abstraction. These abstraction levels loosely corre-

spond to phases of a development methodology. The method-
ology that is described in [11] implicitly underlies the pre-
sented framework.
According to the necessary steps for building composite appli-
cations, we identified five layers that composite applications
should be build of. These layers are hierarchical in the way
that lower layers provide functionality to the upper layers. An
image showing all layers can be found in figure 1.

Fig. 1. Architectural Layers

1) Layer Zero - Legacy Application Systems: BPIOAI and
composite applications are more agile and flexible orchestra-
tions of existent functionality. This functionality is usually
provided by the application systems of an organization — by
the means of application services that are exposed by these
services in some way.
There exist some proposals that aim at supporting the defini-
tion of application services. However, application services are
designed in order to allow re-assembling existent function-
ality of application systems in composite applications. This
is why their definition is dependent on the possibilities of
the application system providing their functionality. Anyway,
designing a service always has the requirement of designing a
re-usable service. Because of this, there is a broad variety of
how granular or cohesive these services are. Due to that reason
we consider it as unrealistic to have the ability to work with
services that are completely aligned with the needs of business
processes. This is why our framework aims at supporting any
size of application services.
As a prerequisite, service-oriented architectures need to rely on
a common protocol that is shared both by service consumers
and providers (cf. eg. [10, p. 218]). How application services
are technically connected to service consumers, is described
at the subsequent layer.

2) Layer One - Connectivity: In order to allow the usage of
application systems’ functionality in composite applications,
this functionality needs to be exposed in a common way.
This exposure is described at this layer of connectivity. Here,
multiple state transitions of the connected application system
are exposed as services. This layer provides connectivity in
between the legacy application system and the composite
application by homogenizing the protocol that is used to access
functionality. From the composite application point of view,
this layer provides the application services.
The characteristics of transparent distribution of services is



achieved by the connectivity layer since it converts a common
protocol all basic services are dealing with into the specific
protocol of the connected legacy system. Usually this layer’s
functionality is provided by adapters. Basically, adapters “[...]
could be a set of ’libraries’ that map the difference between
two distinct interfaces [...] and hide the complexity of those
interfaces [...] from the developer” [10, p. 218]. Thus, at
this connectivity layer the heterogeneous legacy systems are
encapsulated by an interface as it is provided by an adapter.
There exist already several standards for building adapters
or providing a common protocol application systems might
support. Two examples of standards we consider as being
located at this layer are the Java Connector Architecture [12]
and the web service standards WSDL [13] in conjunction with
SOAP [14]. Since there are existent standards, we do not
describe this layer more in depth and refer to the according
standards and vendors of adapters.
Since this layer solely assures connectivity, the actual data
format at this layer is still dependent to the connected systems.
The exchange and conversion of data is provided at the
subsequent layer.

3) Layer Two - Data Exchange and Data Transformation:
This layer of data exchange and data transformation provides
the functionality to the upper layers that is usually provided
by an integration server in Enterprise Application Integration
(EAI) scenarios. Thus, this layer describes the integration sub-
system of the composite application.
This layer is dedicated to tackling down technical complexity
by integrating heterogeneous application systems and provid-
ing homogeneous interfaces to more high-level functionality.
Since we do not mix up business logic with data exchange and
transformation functionality here, the probability for re-using
functionality from this layer is increased. In turn, subsequent
layers do not need to deal with this sort of technical issues.
Additionally this layer unifies the data format of the connected
application systems to a canonical data format (cf. [8, pp. 355-
360] or [15]). After unification of the data, the data is stored
into a data repository we introduce as part of the framework as
well. This data repository provides the context to the processes
that are defined at this and higher layers. Using this context, all
services of a composite application can access and exchange
data.
As the business and control data is stored into that repository,
upper layers can merely deal with a standardized ticket that
reference the data set in the context. So the interfaces of the
involved upper services can be defined independently of the
actual data formats (even independently of the canonical data
format).
Besides the data transformation, this layer also provides func-
tionality for validity checking of data in terms of syntax and
semantics as well as error handling procedures that need to be
invoked whenever errors occur on this layer2. The benefit is
that upper layers do not need to deal with this sort of errors

2The error handling at this layer basically covers support procedures that
need to be initiated whenever errors occur (mostly human errors are the cause
for this sort of errors).

and can therefore provide more re-usable implementation of
business logic.
Additionally, this layer provides the functionality that encapsu-
lates the actual communication semantics with the connected
systems. This means for instance that acknowledgements for
asynchronous calls are transparently handled by this layer.
Technical routing is performed at this layer as well. This
is being performed by dedicated services that perform the
connection with service directories.
All the functionality that is provided by this layer is encap-
sulated in so-called integration services (IS). These services
are in turn orchestrated to two different integration processes.
One providing data to the upper layers — the integration in-
flow (IIF) — and one for publishing data from upper layers
to the connected legacy systems. The latter process is called
integration out-flow (IOF).
For a more detailed description of the integration services and
integration flows you might consider [16].

4) Layer Three - Service Coordination: From a top-down
perspective the integration flows provide together with the
connectivity services at layer one two standardized services
for calling services at or consuming services from underlying
application systems. This is irrespectively of communication
or computational semantics and provides homogeneous data
access as well.
Without further concepts, the functionality that is provided
by these services would be determined by the functionality
offered by the application systems. In order to apply the
paradigm of service orientation and compose new functionality
out of existent or to enrich functions within a specific context,
it might be appropriate to combine the application specific
functionality to new functionality. Expressed differently, ap-
plication services might be needed to be aggregated to more
problem-oriented services (enterprise services). This is why
we introduce this layer that leads the invocation of two to
n basic services with a flow in order to form the enterprise
services.
Conceptually, the coordination layer is recursive. This means
that an aggregated service that is composed at this layer might
be orchestrated together with services from this or lower layers
to form other high-level services at this layer. The benefit of
this approach is that the orchestration themselves can remain
flexible and their re-usability is increased for that reason.
This layer’s coordination might be appropriate due to different
requirements. Considering business processes and functional-
ities that are needed at the level of business requirements,
the basic single services need to interact in a certain way
in order to meet the business requirements. Thanks to the
homogenization means provided by the data exchange and
transformation layer, these aspects are transparent to this layer.
As a consequence, the coordination layer can be used to
aggregate services with strong focus on functional behaviour.
The defined functional flow might aggregate both, company
internal or external services to services that are in turn usable
both internally and externally which introduced the need to
support business protocols, too. These business protocols are



sets of actions that have to be performed by multiple parties in
order to allow successful execution of certain business func-
tionality (cf. eg. [17]). A technically motivated aggregation,
such as the realization of multi-resource protocols that ensure
consistent state transitions, might be appropriate at this layer,
too.
These consistent state transitions can be ensured by two means
of transaction handling. Rather short-term transactions fulfill-
ing the ACID properties by locking and rollback mechanisms
or more long-term transactions without locking and compen-
sation actions. Of course are the orchestrated functionality
implemented at the application systems and the consistent state
transition is to be assured by these systems.
Orchestrating the services of these systems does, however,
raise the need for a cross-service transactional coordination
as well. Even if the application services have to support the
transactional coordination by appropriate compensation oper-
ations or supporting transactional interfaces, the coordination
itself has to be controlled at this layer.
According to Grefen, the transactional coordination consists
of two layers [18]. One layer for so-called local transactions
with ACID properties and one for global transactions with
relaxed transactional properties.
In our approach local transactions are encapsulated at this
layer into the compositions of the enterprise services that are
exposed by this layer to the business process layer. So the local
transaction layer is completely located at our coordination
layer and the coordination protocol (such as the 2-phase
commit) is fully implemented here.
Meeting the long-term characteristics of global transaction,
Grefen et al. relax the isolation and atomicity properties and
introduce the mechanism of safepoints. [18] proposes as well
a way of specifying transactional properties (such as the safe
point properties for local transactions) and an execution model
that supports global transactions based on these specifications.
Summarizing this layer of service coordination, we propose
one layer that transparently coordinates application services
to — what we call — enterprise services. These enterprise
services basically retain the generic interface of the inbound
and outbound services as they are exposed by the second layer

5) Layer Four - Business Processes: As we stated in the
introduction, our aim is to provide means for dealing with
complexity so that business processes can be executed by a
machine very easily. This process execution layer is this 5th
layer. In order to be executed, the business process description
has to be transformed into a workflow execution language
that is compatible with the common protocol used at the
other layers. An example for the web service world would
be the business process execution language for web services
(BPEL4WS). Such a description orchestrates the services that
are exposed by lower layers and interacts with human users
for data input/output or support of decisions. Fundamentals
of this transformations are described by Dehnert and van der
Aalst [4].
Human-interaction is realized again with services that are
called from the user interface and enterprise services that are

called by the user interface. In this area performance plays an
important role because user are directly affected by any delay.
Also are interface technologies and process execution layer
often bundled into single products. We treat user interactions
in our model as interactions with legacy applications3. As
we do not provide statements for the intra application system
design, we neither provide guidance to the design of the user
interaction.
Process branching based on certain indicators are required in
order to provide an execution environment for workflow de-
scriptions. This is why the process environment needs to have
access to the actual context of the process. The data transfer
between application services and the actual context is being
realized by the Data Exchange and Data Transformation Layer.
The visibility of data is controlled by the Service Coordination
layer and transactional properties are incorporated into the
process environment this way. Access to the process context is
realized by the services that are provided by the coordination
layer.

IV. HIERARCHICAL PATTERN SYSTEM FOR COMPOSITE
APPLICATIONS

In the description of our implicit development methodology,
we stated the artefacts from some phase might be used as
input for another phase in order to support design decisions
in this subsequent phase. In this section we discuss design
patterns for the single layers and show interconnections
between patterns of different layers.

A. Intra-Layer Patterns

1) Patterns for the Layer of Business Processes: Business
processes are usually described by workflows in an imperative
way. Workflows have several aspects or perspectives that to-
gether form the description of a workflow. These perspectives
are the control-flow, data, resource and operational perspective
(cf. [5]).
The control-flow perspective “describes activities and their ex-
ecution ordering through different constructors, which permit
flow of execution control, e.g. sequence, choice, parallelism
and join synchronization” [5, p. 2]. Business and processing
data that describes data exchange between a workflow’s tasks
and pre- and post-conditions for the tasks are described in the
data perspective. The resources and the operational perspective
describe how workflows are executed in terms of organization
respectively application systems.
In order to analyze, design and automate business processes
with regards to composite applications, the control as well
as the data perspective are important at the layer of business
processes. This is because the sequence of underlying tasks
that are represented by services is determined at this layer.
Thus, it is important to have means in place that standardize
the description of the sequence as well as how decisions (e.g
for forking and merging) are supported.

3Of course, user interaction could be supported by legacy application
systems.



For the perspective of control flows there exist a catalogue of
so-called workflow patterns. The work of van der Aalst et al.
consists in a set of patterns that are distinguished into basic
control flow patterns, advanced branching and synchronization
patterns, patterns involving multiple instances, state-based
patterns and cancellation patterns.
For the data perspective there exists a broad set of patterns
as well. [6] distinguishes the data patterns into patterns for
data visibility, data interaction, data transfer mechanisms and
data based routing. Solely the category of data based routing
pattern is relevant for this layer as these patterns describe how
data needs to be accessed in order to guarantee the execution
of workflows. As other aspects are not covered by this layer
are the related patterns also relevant for other layers.
All these patterns are artefacts that can be identified within a
workflow description4. Thus, we consider the mentioned sets
of patterns as analysis patterns that can be used in later phases
on lower layers in order to support the design ibidiem.

2) Patterns for the Layer of Service Coordination: The
aspects of composite applications that deal with multilateral
service coordination are described at this layer. So are design
artefacts that provide standardized means for describing and
analyzing coordinations. As the service coordination layer
serves multiple purposes, we show the related design artefacts
also on a per purpose basis.
The service choreography that is incorporated into this layer,
describes how the external services and the service that is
formed by the layer interact. In order to analyze the in-
teractions we reference the service interaction patterns by
Barrows et al. [7]. The authors distinguish their patterns into
four groups: Single-transmission bilateral interaction patterns,
single-transmission multilateral interaction patterns, multi-
transmission interaction patterns and routing patterns. Three
basic dimensions form these groups. The first dimensions
indicates the maximum number of services involved in an
interaction. The maximum number of exchanges between two
parties involved in a given interaction are described in the
second dimension (single transmission or multi-transmission).
In the case of two-way interactions it can be distinguished
whether responses are sent back to the requester or to a third
service. This is described by the third dimension. All of these
patterns can possibly be identified at this layer. Not for the
sake of analyzing but for designing the workflows at this
layer for the purpose of assembling application services in a
way that meats the business process description, we reference
five design patterns. Decker introduces a so-called process
support layer that deals with various aspects of incompatibility
between business process tasks and application services [9].
As we provide a more granular framework, the process support
layer cannot be mapped directly to our layer of service
coordination. Anyway, most of the patterns of two important
classes of patterns are relevant: The patterns for granularity
problems as well as the patterns for interdependency problems.

4Of course, they are also useful for designing engine-specific workflow
descriptions out of business process descriptions.

At our layer of service coordination the following patterns
are considered helpful: Composition, Decomposition and Bulk
Service for the class of granularity problems as well as the Se-
quentializing and the Reordering patterns for interdependency
problems. All these patterns deal with the interaction among
more than two entities and are to be used according to the
business process model as well as to the existent application
services.

The third purpose of the service coordination layer is to
leverage transactions between multiple application services. As
transactional interaction is a requirement, these requirements
have to be included into the design at this layer. In order to
capture this design knowledge as well by the means of patterns
we introduce two design patterns as they are informally
included in Grefen’s work [18].

1) Local Transaction Composition. Definition: A Local
Transaction Composition (LTC) is a subgraph of a
given service orchestration that is required to be atomic,
consistent, isolated and durable. Atomic means that
the context of the composition is after its completion
either in the initial state or in a consistent end-state.
Isolated means that the context is not accessible during
the composition’s execution. Durable means that the
composed application services change their state in a
way that subsequent read-operations represent always
the new state. The LTC forms itself a stateless service.

2) Global Transaction Composition. Definition: A Global
Transaction Composition (GTC) is a subgraph of a given
service orchestration that needs to be consistent, durable
and compensable. A GTC can be an orchestration of
both atomic services and other orchestrations and forms
itself a stateful service with multiple operations.

In order to support these two transactional patterns, we require
three properties that services or transactional compositions
might have. These are: Safepoint, Idempotent and Compensa-
tion. Not that the Safepoint property is unary whilst Idempotent
and Compensation are binary properties between transaction
compositions. These properties need to be assigned to the
single services of a GTC in order to allow the calculation
of GTCs’ compensations.
GTCs can be described by data visibility, data interaction
and data transfer patterns that are described in [6]. In this
context the data visibility patterns are used to determine how
single services of one transaction compositions share their
data. The data exchange between transaction compositions
is described by data interaction patterns. The data transfer
patterns can describe the mechanism of how contexts that
are only accessible by a transaction composition can be made
available to other services.
All patterns that are relevant to this layer are not only input
for lower layers’ designs. Also the identification of certain
patterns affect the design within the coordination layer.

Example: In order to demonstrate the usage of patterns and
some interdependencies, we provide a small example.
An enterprise service SendInvoice that creates a new invoice



and returns the total turnover of a customer is required
by a certain business process. While there are four single
application services the business process is designed with one
task and therefore only one service call is implemented in
the corresponding fourth level workflow. In order to compose
these services to one enterprise service, the Composition pat-
tern needs to be applied. As a design decision that needs to be
made when applying the Composition pattern, it is described
that the first three services need to be invoked all together or
no at all. So from the need of a Composition arises the need for
a LTC that spans the services CheckRating, CreateInvoice and
SendInvoice. The context of this LTC is only accessible during
its execution by these three services. So the workflow data
pattern two — Block Data — needs to be applied. In order to
provide the customer number and intermediate results (such as
the customer’s rating) to subsequent services, the data pattern
9 — Block Task to Sub-Workflow Decomposition — needs to
be applied. As the customer number is also required to execute
the GetTotalTurnover service, the customer number needs to
be transferred as a parameter between the LOC-block and the
single application service and the data pattern 8 — Task to
Task — needs to be applied. As soon as the LOC-block is
finished, its context needs to be committed and to be made
available to all services of the process. Thus, the data pattern
14 — Task to Environment - Push Oriented — is required in
order to commit the local context to the global one.
3) Patterns for the Layer of Data Exchange and Data Trans-
formation: The patterns we assign for this layer are the En-
terprise Integration Patterns by Hohpe and Woolf [8]. In order
to structure these patterns we introduced integration flows
that form a taxonomy for the integration patterns [16]. This
taxonomy describes standard services that are required to read
or write data to application services, respectively. In addition
to the functionality provided by the integration patterns, the
integration flows additionally deal with data heterogeneity and
communication semantics. This why optional constructs are
incorporated into the generic integration flows. Such constructs
are for instance optional acknowledgments that are triggered
in certain states of the integration flow in order to support
certain communication semantics. This optional functionality
is considered as design pattern as well. All relevant patterns
and the categorizing taxonomy are described in [16].

V. SUMMARY AND OUTLOOK

We have presented our an architecture for composite
applications. The benefit of our proposal is that it allows
for a business problem oriented development methodology
as it separates different architectural aspects into different
layers. With well-known patterns we provided support
both for analyzing as well for designing the architectural
layers. This leverages a design methodology and is a first
step towards a semi-automated development approach of
composite applications. Altogether, the architecture, patterns
and pattern dependency form a multi-layered framework for
pattern-aided composite application design.
In order to validate the presented concepts we have identified

a use case from the context of an IT service provider. We
used the presented architecture and patterns in order to design
a composite application supporting the identified business
process. Currently we are busy to finish the implementation
of this industry-scale use case. For the implementation we
used a mapping of the described architecture onto a target
platform in order to facilitate the implementation as well.
Intermediate results show that the described architecture also
supports the proper application of third-party platforms.

REFERENCES

[1] T. Andrews, F. Curbera, D. Hitesh, Y. Goland, J. Klein, and F. Leymann,
“Web service business process execution language for web services
version 2.0,” OASIS, Tech. Rep. 2.0, December 21 2005.

[2] G. Feuerlicht, “Application of data engineering techniques
to design of message structures for web services,” in
Proceedings of the First International Workshop on Design
of Service-Oriented Applications (WDSOA’05), 2005. [Online].
Available: http://domino.research.ibm.com/library/cyberdig.nsf/papers/
0FD9B681AADEFFA1852570CF005FDC06/$File/RC23819.pdf

[3] H. Reijers, “A cohesion metric for the definition of activities in a work-
flow process,” in CaiSE/IFIP8.1 International Workshop on Evaluation
of Modeling Methods in Systems Analysis and Desing (EMMSAD, 03).
Velden, Austria., 2003.

[4] J. Dehnert and W. M. P. van der Aalst, “Bridging the gap between
business models and workflow specifications.” Int. J. Cooperative Inf.
Syst., vol. 13, no. 3, pp. 289–332, 2004.

[5] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and
A. P. Barros, “Workflow patterns,” Distributed and Parallel Databases,
vol. 14, no. 1, pp. 5–51, 2003.

[6] N. Russell, A. H. M. ter Hofstede, D. Edmond, and W. M. P. van der
Aalst, “Workflow data patterns: Identification, representation and tool
support.” pp. 353–368, 2005.

[7] A. P. Barros, M. Dumas, and A. H. M. ter Hofstede, “Service interaction
patterns.” in Business Process Management, W. M. P. van der Aalst,
B. Benatallah, F. Casati, and F. Curbera, Eds., vol. 3649, 2005, pp.
302–318.

[8] G. Hohpe and B. Woolf, Enterprise Integration Patterns, ser. The
Addison Wesley Signature Series. Pearson Education Inc., 2004.

[9] G. Decker, “Bridging the gap between business processes and existing
it functionality,” in Proceedings of the First International Workshop on
Design of Service-Oriented Applications (WDSOA’05), 2005. [Online].
Available: http://domino.research.ibm.com/library/cyberdig.nsf/papers/
0FD9B681AADEFFA1852570CF005FDC06/$File/RC23819.pdf

[10] D. S. Linthicum, Next Generation Application Integration. Boston, MA
USA: Addison-Wesley, 2004.

[11] H. Hofmeister and G. Wirtz, “Approaching a methodology for designing
composite applications integrating legacy applications using an architec-
tural framework,” in Proc. GI-FG Treffen EMISA, Hamburg, LNI, Vol.
95, Springer, 2006.

[12] JSR 112: J2EE Connector Architecture 1.5, Sun Microsystems Inc.
[Online]. Available: http://www.jcp.org/en/jsr/detail?id=112

[13] Web Services Description Language (WSDL) 1.1, W3C, March 2001.
[Online]. Available: http://www.w3.org/TR/wsdl

[14] SOAP Version 1.2 Part 1: Messaging Framework, W3C, June 2003.
[Online]. Available: http://www.w3.org/TR/soap12-part1/

[15] G. Kaufman, “Pragmatic ecad data integration,” New York, NY, USA,
Tech. Rep. 1, 1990.

[16] H. Hofmeister and G. Wirtz, “A Pattern Taxonomy for Business Process
Integration Oriented Application Integration,” in Proc. 18th Intern. Conf.
on Software Engineering and Knowledge Engineering, San Francisco
Bay, USA, 2006, 2006.

[17] “Rosettanet partner interface processes,” RosettaNet, Tech.
Rep. [Online]. Available: http://www.rosettanet.org/RosettaNet/
Rooms/DisplayPages/LayoutInitial?Container=com.webridge.entity.
Entity[OID[9A6EEA233C5CD411843C00C04F689339]]

[18] P. Grefen, J. Vonk, and P. Apers, “Global transaction support for
workflow management systems: from formal specification to practical
implementation,” The VLDB Journal, vol. 10, no. 4, pp. 316–333, 2001.


